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[T I N R

Abstract: The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of three endo-
plasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) responsible
for regulating protein synthesis and alleviating ER stress. PERK has been implicated in tumorige-
nesis, cancer cell survival as well metabolic diseases such as diabetes. The structure-based design
and optimization of a novel mandelamide-derived pyrrolopyrimidine series of PERK inhibitors
as described herein, resulted in the identification of compound 26, a potent, selective, and orally
bioavailable compound suitable for interrogating PERK pathway biology in vitro and in vivo, with
pharmacokinetics suitable for once-a-day oral dosing in mice.

Keywords: ER stress; PERK; UPR; kinase; inhibitor; cancer; diabetes; small molecule; structure—
activity-relationship (SAR)

1. Introduction

Cells must match the rates of protein synthesis with demand to avoid the onset of
proteotoxic endoplasmic reticulum (ER) stress. In conditions of excess protein production,
an accumulation of misfolded proteins in the ER lumen induces the unfolded protein
response (UPR), which arrests global translation while enabling specific processes that
restore protein homeostasis [1,2]. The UPR is mediated by three discrete signaling cascades,
IRE1, ATF6, and EIF2AK3 (PERK) [3]. Upon activating the UPR, PERK phosphorylates
elF2a at Ser51, leading to widespread inhibition of protein translation with a few selected
regulatory proteins translated to restore homeostasis and alleviate ER stress [1,3]. In cancer,
acute activation of UPR enables tumors to overcome deleterious ER stress induced by rapid
cell proliferation, nutrient deprivation, hypoxia, and drug treatments [4-6]. Pharmacolog-
ical or genetic inhibition of PERK slows proliferation of tumor xenografts in mice [7,8],
and small molecule PERK inhibitors have recently entered clinical trials for several oncol-
ogy indications, including clear cell renal cell carcinoma (ccRCC) and multiple myeloma
(NCT04834778; NCT05027594).

Acute ER stress and activation of UPR restores protein homeostasis and supports
cell survival, whereas long-term ER stress shifts cells toward an apoptotic cell fate [9].
While intermittent ER stress occurs regularly in cell types that produce high abundance of
protein, metabolic dysfunction can result in chronic ER stress that coincides with a number
of metabolic and neurological diseases [9-12]. Type-1 Diabetes (T'1D) is an example of
a metabolic disease and autoimmune disorder characterized by PERK hyperactivation in
insulin-producing {3-cells of the pancreatic islets [11-13]. Immunohistochemistry (IHC)
staining of pancreas sections from T1D patients revealed PERK pathway activation in
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insulin-secreting beta cells, relative to healthy control patient samples [13], and PERK
activation precedes the destructive autoimmune attack of beta cells in animal models of
T1D [12,14]. Together, these findings highlight a potential role for PERK in diabetes and
possible therapeutic benefit of PERK inhibitors beyond oncology.

While some cancers and metabolic diseases are characterized by PERK hyperactivation,
genetic ablation of PERK results in glucose dysregulation and pancreatitis, suggesting that
some basal level of PERK activity is essential to pancreatic health [15,16]. It is possible
that the attenuation of PERK activity, rather than complete suppression, could provide
therapeutic benefit while supporting normal pancreatic function. To enable future testing
of this hypothesis, we sought to create a series of PERK inhibitors with stable PK profiles
that could be administered at low doses to attenuate PERK yet tuned through higher doses
to sufficiently inhibit PERK for tumor inhibition.

Previously described medicinal chemistry efforts around PERK inhibitors have made
use of a variety of core hinge-binding regions, including aminopyridines, pyrrolopy-
rimidines, quinazolines, and quinolines [7,8,17]. Pyrrolopyrimidine cores have been de-
veloped and approved as JAK kinase inhibitors [18,19], and modifications to the core
scaffold can have profound effects on stability and selectivity [17]. Here, we optimized
the pyrrolopyrimidine core and leveraged extensive SAR information from our recently
reported aminopyridine series of inhibitors to guide chemistry efforts aimed at optimizing
the in vivo properties of pyrrolopyrimidine PERK inhibitors [7].

Our efforts were focused on developing potent and selective PERK inhibitors with
suitable pharmacokinetic profiles to enable once or twice per day oral dosing in mouse
models with a flat steady state exposure profile. The goal was to avoid large differences be-
tween Cpayx to Cqpp, or Cyyy, in order to achieve a constant and sustained pharmacodynamic
response. This paper focuses on the structure-based design, structure—activity relationship
(SAR), absorption, distribution, metabolism and excretion (ADME), and pharmacoki-
netic/pharmacodynamic (PK/PD) properties of a novel class of mandelamide-derived
pyrrolopyrimidine PERK inhibitors leading to the identification of Compound 26, with
the desired flat steady state exposure profile. Compound 26 was characterized in a mouse
pancreas assay and has been selected for further evaluation in animal models, which will
be reported in due course.

2. Materials and Methods
2.1. Biochemical Assays

The inhibitory potencies of 26 inhibition against PKR, HRI, PERK and GCN2 were
evaluated in cell-free biochemical assays following manufacturer’s instructions (Carna;
Table 1). In brief, 26 was dissolved in DMSO and serially diluted 3-fold to generate
concentrations ranging from 10 uM to 0.2 nM in a 384-well plate using a TECAN EVO200
automated liquid handler. 10 nL stock solution was transferred into each well of a 384well
assay plate by an Echo550 and an equivalent volume of DMSO was added to the control
wells. To each assay well, recombinant protein was suspended in 20 pL reaction buffer
(listed below) and incubated at 25 °C for 1.5 h while shaking at 1250 rpm. Following
incubation, 10 pL of a FRET dilution buffer including 20 mM EDTA and 4 nM Tb-anti-
pelF2a [pSer51] (Invitrogen, Cat# PV4815) was added to each well and incubated at 25 °C
for 2 h while shaking at 600 rpm in the dark. Analysis was performed using an Envision
Microplate Reader (PerkinElmer).

Table 1. Reagents and conditions used in biochemical characterization of ISR kinases.

Protein Carna Cat# Assay Buffer
GCN2 05-153 GCN2 (1 nM); DTT (2 mM); ATP (150 uM); GFP-elF2a (100 nM; Invitrogen Cat# PV4809)
HRI 05-154 HRI (0.12 nM); DTT (2 mM); ATP (30 uM); GFP-elF2a (100 nM; Invitrogen Cat# PV4809)
PERK 05-155 PERK (0.09 nM); DTT (2 mM); ATP (8 uM); GFP-eIF2a (100 nM; Invitrogen Cat# PV4809)
PKR 05-156 PKR (0.11 nM); DTT (2 mM); ATP (6 uM); GFP-eIF2a (100 nM; Invitrogen Cat# PV4809)




Pharmaceutics 2022, 14, 2233

30f20

2.2. PERK Crystallization and Structure Determination

Human PERK (575-1094 A670-874) was purified as described previously [7]. Purified
PERK protein at 11 mg/mL was mixed with 10 mM compound 11, 24, or 26 (in DMSO) to
a final protein-inhibitor molar ratio 1:2. The PERK-inhibitor mixture was incubated on ice
for 2 h before crystallization. The crystals with compound 11 or 26 were grown at 20 °C
in sitting drops by combining 2.0 uL. PERK-inhibitor mixture, 2.0 uL reservoir solution
(12-14% PEG3350, 4% tacsimate pH7.0), and 0.4 pL seed stock which was equilibrated
over a 500 pL reservoir solution. The crystal with compound 24 was grown at 4 °C in
a hanging drop by combining 1.5 uL PERK-inhibitor mixture, 1.5 uL reservoir solution
(9% PEG3350, 180 mM Na/K tartrate, 100 mM HEPES pH 7.0) which was equilibrated
over a 500 pL reservoir solution. The crystals were grown to 0.2-0.5 mm over a three-week
period before harvesting for analysis. The crystal was transferred stepwise to a cryo-
solution with the crystallization cocktail plus 20% glycerol before being frozen in liquid
nitrogen. Diffraction data were collected at the IMCA-CAT beamline 17ID for compound
11 or GMCA-CAT beamline 23IDD for compound 24 or 26 at the Advanced Photon Source
at Argonne National Laboratory using a Pilatus 6M detector. The diffraction images were
processed with DIALS [20] and scaled with AIMLESS [21]. The structure was solved
by molecular replacement using PDB 4X7] [17] as starting model by Phaser [22]. The
structure was manually built using Coot [23] and subsequently refined using Refmac5 [24].
The crystallographic figures were generated by CCP4MG [25], and the statistics of data
collection and refinement are summarized in Supplemental Table S1.

2.3. Pharmacokinetic and Pharmacodynamic Analysis in Plasma and Pancreas

For PK analysis of pyrrolopyrimidine analogs in mouse, rat, and dog plasma, the oral
formulation was prepared as a solution containing 20% (w/v) Captisol in 25 mM NaH;PO,
buffer (pH 2). Compounds were administered orally by gavage at 10 mg/kg to female CD1
mice. After dosing, plasma samples were collected to characterize the PK profiles at 0.25, 0.5,
1,2,4,8,12 and 24 h post-dose. The plasma concentration of compound was determined by
protein precipitation with acetonitrile and liquid chromatography with mass spectrometric
detection (LC-MS/MS). Parameters were estimated using Phoenix (WinNonlin) pharma-
cokinetic software version 6.1.0 using a non-compartmental approach consistent with the
oral route of administration. PK analysis of 26 in plasma and pancreas followed a similar
analytical method as above, with minor modifications. Compound 26 was suspended
in a vehicle consisting of 0.5% methylcellulose (400 cP) and 0.1% Tween80 in water and
administered to BALB/c nude mice by oral gavage at 0.3, 1, 3, 10, 30 mg/kg. Plasma and
pancreas were sampled from 5 mice per group following a single oral administration at 1,
4,8,12, 24 h post-dose.

Total protein was extracted from pancreas tissues sampled during PK studies described
above. Frozen pancreas tissue was homogenized by polytron in lysis buffer consisting of 2x
Laemmli SDS sample buffer (Novex), supplemented with 10% BME (Gibco), 1X benzonase
(EMD Millipore Sigma), phosphatase inhibitors (Sigma) and Mini protease inhibitor tablet
(Roche). Homogenate was incubated at room temperature for 10’, then boiled for 10/,
followed by centrifugation for 10" at max speed on a benchtop centrifuge. Protein analysis
performed using JESS high-throughput protein analysis instrument (Biotechne) using
antibodies for phosphoPERK developed internally and PERK (CST).

2.4. Biochemical and Cell-Based Characterization of Pyrrolopyrimidine Analogs

Methods used to evaluate biochemical PERK activity are described and published
elsewhere [7]. In brief, biochemical PERK activity is evaluated using a LanthaScreenTM
(PerkinElmer) TR-FRET assay to detect phosphorylation of a GFP-tagged elF2a substrate
(ThermoFisher). Excitation at 340 nM of a terbium chelate donor fluorophore in an elF2a
antibody results in energy transfer to GFP acceptor fluorophore upon elF2a phosphorylation
by PERK. Reaction buffer was composed of 50 mM HEPES (pH 7.4), 10 mM MgCl,, 1 mM
EGTA and 0.01% (v/v) BrijTM-35. Reactions were initiated by the addition of substrate and
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ATP, followed by incubation for 1 h at RT prior to addition of EDTA and the anti-pelF2a
antibody. FRET was measured by an EnVision Plate Reader (PerkinElmer). Data were
plotted as percent inhibition along a 10-point 3-fold dilution series of inhibitors. ICsg values
were calculated using 4-parameter logistical fitting in XLFit.

Methods used to evaluate in vitro cellular PERK inhibition are described and pub-
lished elsewhere [7]. In brief, stableHEK293 cells were created using lentiviral particles
harboring a GFP-elF2a expression vector. Transfectants were selected by puromycin and
enriched using fluorescent cell sorting based on GFP expression. HEK293-EGFP-elF2a
cells were plated at 5000 cells/well in 384-well assay plates and incubated overnight. The
following day, pyrrolopyrimidine analogs were added to wells using an Echo acoustic
dispenser and incubated for 30 min. ER stress was induced by the addition of tunicamycin
to the wells at 1 mM for 2 h. Cells were lysed and pelF2a was evaluated using a TR-FRET
system, as described above.

2.5. In Vivo Tumor Xenograft Studies

In vivo studies of the effect of pyrrolopyrimidines on 786-O xenograft inhibition follow
a method published elsewhere [7]. Female BALB/c nude mice were inoculated subcuta-
neously with 786-O tumor cells (5 x 10°) in 0.1 mL of PBS. Animals were randomized when
tumors reached 100-200 mm?3 into treatment groups. Pyrrolopyrimidine PERK inhibitors
24, 26 or 70 were dissolved in vehicle solution consisting of 20% (w/v) Captisol in 25 mM
NaPOj, buffer (pH2) and administered twice daily (BID) by oral gavage for 29 days. Tu-
mor volumes were measured by caliper and the volume was expressed in mm? using the
formula: V= (L x W x W)/2, where V, L, and W represent tumor volume, length, and
width, respectively. All studies were conducted following an IACUC-approved protocol
(AN-1903-05-1798). Experimental data management and reporting were in accordance with
applicable Crown Bioscience’s Guidelines and Standard Operating Procedures.

3. Results and Discussion

Small molecule PERK inhibitors across a variety of chemotypes have been previously
described in the literature and captured in an earlier publication from our group around
an aminopyridine series of PERK inhibition [7]. Herein, we report the synthesis and
discovery of a series of novel mandelamide-derived pyrrolopyrimidines (I) that are highly
potent, selective, and orally bioavailable PERK inhibitors. These medicinal chemistry efforts
were iteratively supported by an X-ray crystallography structure-based approach to develop
and refine SAR information. Collectively this approach permitted us to optimize the
physiochemical and ADME/PK properties of this chemical series. Different R!, R?, R3, Ar
and L groups have been introduced into our PERK small molecule series to tune the potency,
selectivity and drug-like properties, such as aqueous solubility and cellular permeability.

The general synthesis for our pyrrolopyrimidine PERK inhibitors is shown in Scheme 1.
The terminal ring substitution with different R? groups was introduced through the cor-
responding aldehyde 1. Cyanohydrin 2 formation with TMS-cyanide and zinc(Il) iodide
followed by acid hydrolysis of the nitrile in methanol provided methyl mandelic ester 3.
Hydrolysis of the ester with lithium hydroxide and acylation of the benzylic alcohol gave
the protected mandelic acid 5.

The proximal ring substitution with different R3 groups was introduced through
bromo aniline 6. Palladium-mediated borylation of 6 to give the aniline boronate ester 7
was followed by T3P coupling with acid 5 to provide amide 8. Boronate ester 8 underwent
Suzuki coupling with pyrrolopyrimidine bromide 9 to give racemic acetyl-protected prod-
uct 10. Deacylation under basic conditions followed by chiral separation of the enantiomers
provided the final product I.
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Previously reported SAR of PERK inhibitors have revealed modifications to the hinge
binding region that have profound effects on binding affinity to PERK as well as selectivity
versus the kinome [7,17]. Structure based design modelling was used to focus efforts
on optimizing the pyrrolopyrimidine hinge-binding region of the molecule. Inhibitor 11
was co-crystallized with PERK into a trigonal space groupP3,21 with comparable cell
parameters as PDB 4X70. Compound 11 formed three hydrogen bonds directly with the
carbonyl of Q889, the amide of C891, and the carbonyl of F956 from PERK, respectively
(Figure 1A). In addition, compound 11 forms two hydrogen bonds with a water molecule,
and this molecule hydrogen bonds to the amide of V652. In the ATP binding hinge region,
substitution at the C2-position (R1) of the pyrrolopyrimidine ring appeared feasible, filling
a small pocket near C891. A methyl group located at the R1 position of compound 11
afforded analog 24 whose co-crystal structure with PERK confirmed the occupation of
the small pocket near C891 along with the close contact of the C2-methyl group with the
carbonyl of C891 with a distance of 3.14 A (Figure 1B). Although a weak CH:--O hydrogen
bond is feasible, this contact appears to be more repulsive. As a result, a small rotation
of the main chain amino acid Q889 and L890 of PERK, along with a minor shift of the
pyrrolopyrimidine ring of inhibitor 24 are observed compared to those in the structure of
11 (Figure 1C). These shifts maintain the hydrogen bonds with similar distances. Due to
a lower resolution (2.92A) of the compound 24 structure (Table S1), the aforementioned
water molecule in the compound 11 structure was not observed. This water molecule is
assumed to locate at the same position, as all hydrogen bond doner and acceptor atoms
are still presented at similar positions in the compound 24 structure. These observations
indicate that the reduction of potency of 24 is likely caused by repulsion from the methyl
group rather than the disruption of the hydrogen bonding pattern.

While having a minor effect on PERK potency, the methyl substituent on the pyrrolopy-
rimidine ring had a profound effect on the kinase selectivity. Compounds 11 and 24 were
screened in the DiscoverX scanMAXM panel of 468 kinases [26]. The resulting TREEspot™
interaction maps (Figure 2) revealed that the methyl substituent in 24 led to superior selec-
tivity versus 11. The S(35), S(10), and S(1) selectivity scores at a concentration of 1 M were
0.005, 0, and O for 24 versus 0.072, 0.035, and 0 for 11. Given the superior selectivity of 24
but slight loss in potency versus 11, further optimization of the series was carried out with
the 2-methyl substitution on the pyrrolopyrimidine ring to further improve potency and
drug-like properties.

Exploration of the terminal aryl ring revealed several trends (Table 2): (1) Substitution
at the 3-position was preferred to substitution at the 2-position of the ring (compare
24 vs. 25,26 vs. 27,28 vs. 29, and 30 vs. 31). (2) Lipophilic substituents, such as CFs, Cl, Bz,
CCH, CF;H, and c-Pr provided enhanced biochemical and cellular potency compared with F
substitution (24 vs. 26, 28, 33, 32, 34, and 35) leading to the recovery of the potency lost with
the incorporation of the selectivity-enhancing 2-methyl pyrrolopyrimidine ring (compare
11 vs. 24 and 11 vs. 26, 28, 33, and 32). (3) Polar substituents were not well tolerated
and resulted in substantially reduced cellular potency, as in the case of CN derivative
36, or in complete loss of activity (biochemical and cellular activity at the concentrations
tested), as in the case of sulfone analog 37. (4) 3,5-Di-substitution with lipophilic groups
provided further enhancements in potency (38, 39, 40, and 41). Interestingly, addition of
a fluorine substituent to CN on the terminal phenyl ring largely reversed the loss of cellular
potency due to the CN group (36 vs. 42). (5) Replacement of the terminal phenyl ring with
heterocycles, such as F-, Cl-, or CF3-substituted pyridines, resulted in 8- to 11-fold losses in
cellular potency (compare 24 vs. 43, 28 vs. 44, and 26 vs. 45).
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While having a minor effect on PERK potency, the methyl substituent on the pyr-
rolopyrimidine ring had a profound effect on the kinase selectivity. Compounds 11 and
24 were screened in the DiscoverX scanMAXS®M panel of 468 kinases [26]. The resulting
TREEspot™ interaction maps (Figure 2) revealed that the methyl substituent in 24 led to
superior selectivity versus 11. The S(35), S(10), and S(1) selectivity scores at a concentra-
tion of 1 uM were 0.005, 0, and 0 for 24 versus 0.072, 0.035, and 0 for 11. Given the superior
selectivity of 24 but slight loss in potency versus 11, further optimization of the series was
carried out with the 2-methyl substitution on the pyrrolopyrimidine ring to further im-
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tion of 24 (efflux ratio of 5.2), the compounds showed little to no efflux. Plasma protein
binding was found to be high across all species tested, a characteristic common for many

kinase jghibitors. - = 3-Me 0.0011 0.017

F
Table 4. Solubility, permeability, plasma protein binding and hepatocyte clearance properties of

selected PERK inhibitors.

/N

Kinetic Caco-2 50 plasma Proie}ﬁ'ﬁi'nding 3-Et He%‘eggggte Clearancd®97 G5 min)
Cmpd Aqueous P (A>B) E
No.  Solubility PP/ - Efﬂ}lx Human Rat Mouse Dog Human Rat Mouse Dog

(uM) (10~°cm/s) Ratio
26 19 21 2.2 51 99.8 +£ 0.0 ‘59_&& 0.0 99 9 qu-_o 5-8%> £ 0.0 194 ggo7166 118  ng2130
28 35 23 1.9 99.8 £ 0.1 9.7 £ 0.0 98% +03 778 27 62 355
65 58 26 1.6 99.6+0.1 989 +£0.0 99.3 :I: 02 987+£01 390 22 64 567
24 76 9 5.2 9924+02 991+£02 9944+00 970+£04 733 23 31 >1000
41 24 20 2.5 9.6 £02 995+£02 999+£0.0 988+£03 68 16 24 232
39 10 16 2.0 9994+0.0 999+£00 >999 >99.9 277 252 320 223
38 19 19 1.9 99.0+01 991+£03 9924+£03 984+01 897 121 805 460
48 14 24 1.6 99+£00 99.6£00 998+£0.0 996=£01 556 25 53 215
66 61 24 1.5 993+02 986+£01 988402 982+02 358 13 167 39
70 66 29 1.7 994 +£00 993+£01 997+£01 994+£01 360 15 45 268

In vitro metabolic stability was assessed in human, rat, mouse, and dog hepatocytes.
In general, the compounds were found to be relatively stable in human and dog hepatocytes
and exhibited long half-lives. For several compounds (28, 65, 24, 41, 66, and 70), stability
was reduced in rodent hepatocytes, particularly rat. Compounds with alkyl groups (i.e., Me)
on the terminal phenyl ring tended to have lower stability (41 vs. 39). Several compounds
(26, 39, and 38) maintained good metabolic stability across all species tested.
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To connect the in vitro ADME results with the in vivo setting, select compounds (26,
28, 65, 24, 41, 39, 38, 48, 66, and 70) were examined in mouse PK studies (Table 5). All
of the compounds showed robust oral exposure with Cnax values for most compounds
>8000 ng/mL and AUC_j,¢; values >25,000 h-ng/mL. The compounds also showed good
in vivo half-lives of 2-3.5 h and excellent bioavailability (>70%) apart from compound 41.
Compound 26 stood out with a particularly attractive pharmacokinetics profile with Cpax
of 17,200 ng/mL, AUC_j,s of 126,019 h-ng/mL, half-life of 3.5 h, and bioavailability of
82%, a significant improvement over our earlier analog 24 and was therefore chosen as one
of the key leads in this series PERK inhibitors.

Table 5. In vivo pharmacokinetics (PK) properties of selected PERK inhibitors in mice. Compounds
administered at 10 mg/kg by oral gavage (PO).

Compound Cmax (ng/mL) AUC) 1,6t (h-ng/mL) tyo (h) F (%)
26 17,200 126,019 3.5 82
28 14,067 65,764 24 84
65 8150 40,105 22 129
24 13,100 37,495 21 77
41 12,467 26,010 2.7 40
39 14,300 86,444 29 78
38 8597 28,932 2.0 94
48 3017 10,889 2.1 70
66 9610 39,835 2.0 126
70 9723 32,258 2.0 117

Inhibitor 26 was co-crystallized with PERK into a trigonal space groupP3,21 with
comparable cell parameters as previously noted with compounds 11 and 24. Replacement
of the 3-fluorine on the terminal phenyl group in 11 and 24 and with a larger CF3 group
in 26 induces a flip in the phenyl ring since the enzyme position containing the fluorine
cannot accommodate the bulkier CF; group (Figures 1 and 3). The fluorine atom of
24 forms four contacts with a distance of 3.8 A or less with residues within the back pocket
region of PERK, whereas the CF3 group of 26 forms ten contacts with PERK. These extra
contacts may stabilize the binding of 26 to PERK and explain the increased potency of 26
compared to 24.

Compound 26 was found to have excellent selectivity in the DiscoverX kinase panel
(Figure 4; Supplemental Table S2) comparable to that of compound 24. The S(35), S(10), and
5(1) selectivity scores at a concentration of 1 pM were 0.01, 0.002, and 0.002. Importantly,
26 demonstrated potent selectivity for PERK over the other three highlyconserved ISR
kinases (GCN2, HRI, and PKR; Supplemental Table S3). In biochemical assays, the ICs( of
26 against PERK was 4.7 nM, compared to IC5 values greater than 10 uM for each of the
other ISR kinases. The primary off-target activity of 26 was associated with FLT3 kinase
and its mutant isoforms. Radiometric kinase assays were used to validate the kinome
panel and determine the relative ICsy value of 26 against wild-type FLT3 and a mutant
isoform (D835Y). When evaluated individually using concentrations of 26 up to 10 uM,
the relative IC5p against wild-type FLT3 was >1 uM, and >10 uM against the mutant
variant FLT3 (D385Y), indicating weak to no activity against FLT3wt or the mutant form
(Supplemental Table S3).

To understand the effect of 26 in target organs, the PK/PD relationship of 26 was inves-
tigated in mouse pancreas. PK analysis of plasma and pancreas samples from mice treated
with 26 revealed dose-proportionate exposure at doses ranging from 0.3 to 30 mg/kg
following a single administration by oral gavage (Supplemental Figure S2). Pancreas tis-
sue was sampled to evaluate the effect of 26 on PERK autophosphorylation in pancreas,
following oral administration of 26 at 0.3, 1, 3, 10, and 30 mg/kg. At 1 h following adminis-
tration, phosphoPERK (T980), relative to total PERK protein (pPERK/PERK) decreased in
a dose-dependent manner, reaching approximately 80% inhibition at 30 mg/kg (Figure 5A).
When PERK inhibition was evaluated across time in mouse pancreas, a dose-dependent



Pharmaceutics 2022, 14, 2233

48 3017 10,889 2.1 70
66 9610 39,835 2.0 126
70 9723 32,258 2.0 117

15 of 20

comparable cell parameters as prev1ously noted with compounds 11 and 24. Replacem

ofnihsidotvarinsen dhe terminkahensr ssewindland 2&pudonithidlaager CFs gre
ins@ativadufes FitipanBhaphebsdrvingsinge dheeriymatpos osegaotpningthe fluor
caxpesupceorhmyddtarthecbralkief Z6fobgeoep (Figathemduan gplaymilradlponineasatom of
f&mm@%&ﬁw@ &%}Hﬁa ‘H’f‘sﬁ&ﬁé@f’éf@g’lﬁ%ﬂ?f}&%f%ﬁfﬂ Q%ﬁ{ﬁf@gl%%ﬁﬁﬁwﬁ%ck poc

to enabl oncenft%ufn of 26twas gu%ntltﬁ f.&(rafh
gic? fo owin in éa n t D 171[<S %}) 1sten VSVIVI’ZI ]ﬂgserv 10ns ese &
cQRRALS maY a§3 ?%sgi a5ia lﬁ}a@ AR AR R R

C@i@?ﬁlﬁdé&b%ollowmg administration (Figure 5C).

Figgue 3. Crystalsstuniciianst ebmpoipasddénbaumsk Ee RERKkinase domain. d#eb Miew of 2
thadTHIRK aetinessideP PRR Kabidahdeanetisvshawabaseaibhion rabliahe sidd dhersideechaing age shows
cyliivdier in browifdoracbonobluelise firrapidnogem renfbredykpnanyigenedomtsy algs peatpmliid Compo
2adsskbovmassayliinder wiitth saneecoddosdabremexexpegterreéor forbanbonl grdygfieyfhoorfheorine. C
pOumgolihdsl $hxslowimia shiniilar meamaeotorpopcRede26;pexvepdldthgotdliongdl tisansea for car
atdonss. Hiydrogembovoxd éofd626askashonarpncyashethbhesl Tinephithel pheriyHippgdsifiépped due
repkplecaennotfithe 3-flworiaemitl 18 €&CF 20n (B6 VIBY VidniofiRe RkihacBERKcavitbewifecevith sur
repciieting. Thecebloinieneiisitgrespravpondietenidwated @ltateadtelicqedential fpotenBakTrom 20 k
(feed) e +20 Kii7e (i),

Compound 26 was found to have excellent selectivity in the DiscoverX kinase pa
(Figure 4; Supplemental Table S2) comparable to that of compound 24. The S(35), S(
and S(1) selectivity scores at a concentration of 1 uM were 0.01, 0.002, and 0.002.
portantly, 26 demonstrated potent selectivity for PERK over the other th



Pharmaceutics 2022, 14, 2233

SV YL AV AL VUL R AR L A AR OO, A A ALy A L e Y RV Aty Wi eV Vv o oo
ated with FLT3 kinase and its mutant isoforms. Radiometric kinase assays were used to
validate the kinome panel and determine the relative ICs value of 26 against wild-type
FLT3 and a mutant isoform (D835Y). When evaluated individually using concentrations
of 26 up to 10 pM, the relative ICsoagainst wild-type FLT3 was >1 uM, and >10 uM against
the mutant variant FLT3 (D385Y), indicating weak to no activity against FLT3Wt%f §

Pharmaceutics 2022, 14, x

mutant form (Supplemental Table S3).

18 of 21

“’“ S % éﬁlﬁ% mérﬁﬁa q?Ea“
ar’n‘:glf se an ta t Rlﬂ h
é%ﬁ no uﬁq% jial assa omp ete ta ula e resuﬁ% presén t

yes levels following admmlstra ion (Figure 5C

To understand the effect of 26 in target organs, the PK/PD relationship of 26 was
investigated in mouse pancreas. PK analysis of plasma and pancreas samples from mice
treated with 26 revealed dose-proportionate exposure at doses ranging from 0.3 to 30
mg/kg following a single administration by oral gavage (Supplemental Figure S2). Pan-
creas tissue was sampled to evaluate the effect of 26 on PERK autophosphorylation in
pancreas, following oral administration of 26 at 0.3, 1, 3, 10, and 30 mg/kg. At 1 h following
administration, phosphoPERK (T980), relative to total PERK protein (pPERK/PERK) de-
creased in a dose-dependent manner, reaching approximately 80% inhibition at 30 mg/kg
(Figure 5A). When PERK inhibition was evaluated across time in mouse pancreas, a dose-
dependent inhibition was observed which was relatively stable across a 12 h period fol-
lowing administration of 26 (Figure 5B). This observation was consistent with the dose-
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As the focus of this program was to develop a novel, highly potent, selective and
orally bioavailable PERK inhibitor to probe the role of PERK biology in animal models,
compounds 24, 26 and 70 were tested for in vivo efficacy in a clear cell renal cell carcinoma
(ccRCC) xenograft model, 786-O (Figure 6). The 786-O model is driven by the Von Hippel-
Lindau (VHL) mutation, which leads to PERK pathway activation and is therefore a suit-
able model to assess the biological activity of these PERK inhibitors [17]. The compounds
were dosed at 30 mg/kg, twice per day (BID) for 29 days and were well tolerated as deter-
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Figure 6. PERK inhibitors 24, 26 and 70 inhibit tumor growth of 786-O RCC xenografts. Animals
were treated at 30 mg/kg BID dosing for 29 days. Statistical analysis of group means by one-way
ANOVA (**p <0.01, *** p < 0.001).

In summary, we have developed a novel class of potent pyrrolopyrimidine PERK
inhibitors with excellent ADME and PK/PD properties. Robust kinase selectivity was
achieved with substitution on the pyrrolopyrimidine hinge binder region driving kinase
selectivity, with a methyl substitution at the 2-position of the ring resulting in exquisite
selectivity for PERK over other kinases. Further optimization of the 2-methyl substituted
analogs led to identification of lead molecule 26 that retained excellent potency and
selectivity and had good in vitro metabolic stability across all species tested. When
26 was evaluated in vivo, high AUC}, values and a flat, sustained plasma exposure
profile were observed in mouse plasma and pancreas tissue. A single administration
of 26 resulted in stable PERK inhibition across a 12 h period in mouse pancreas. These
characteristics led to the selection of 26 for further development, and evaluation in animal
models is ongoing.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics14102233 /s1, Supplemental Table S1: Crystallogra-
phy data collection and refinement statistics; Supplemental Table S2:scanMAXSM Kinome Assay
Results; Supplemental Table S3: Potency of Cmpd 26 against four ISR kinases and two FLT3 iso-
forms; Supplemental Figure S1: Compound 26 is selective against cell lines driven by FLT3-ITD;
Supplemental Figure S2: In vivo PK in plasma and pancreas; Supplemental Figure S3: Compound
26 slows growth of 786-O RCC tumor xenografts; Supplemental Scheme S1: Synthesis of (R)-N-(4-(4-
amino-7-methyl-7H-pyrrolo[2,3-d]pyrimidin-5-y1)-3-methylphenyl)-2-(3-fluorophenyl)-2-hydroxy ac-
etamide (11) and (S)-N-(4-(4-amino-7-methyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-3-methylphenyl)
-2-(3-fluorophenyl) -2-hydroxyacetamide (12); Supplemental Scheme S2: Synthesis of (S)-N-(4-(4-
amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2,3-difluoro phenyl)-2-(3-fluorophenyl)-2-
hydroxyacetamide (96) and (R)-N-(4-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2,3-
difluorophenyl)-2-(3-fluoro phenyl)-2-hydroxyacetamide (70); Supplemental Scheme S3: Synthesis
of (S)-N-(4-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-3-fluorophenyl)-2-hydroxy-
2-(3-(trifluoromethyl)phenyl)acetamide (106) and (R)-N-(4-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3-
d]pyrimidin-5-yl)-3-fluorophenyl)-2-hydroxy-2-(3-(trifluoromethyl) phenyl)acetamide (47).
References [7,17,20-25,27] are cited in the supplementary materials.
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