bm-navigation: bm-t1-home-navigation-1
bm-pageheader: bm-t2-aboutus-pageheader
bm-basic: references
  1. Aguirre-Ghiso, J. A. How dormant cancer persists and reawakens. Science 361, 1314-1315, doi:10.1126/science.aav0191 (2018).
  2. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature reviews. Cancer 14, 611-622, doi:10.1038/nrc3793 (2014).
  3. Nobre, A. R., Entenberg, D., Wang, Y., Condeelis, J. & Aguirre-Ghiso, J. A. The Different Routes to Metastasis via Hypoxia-Regulated Programs. Trends in cell biology, doi:10.1016/j.tcb.2018.06.008 (2018).
  4. Harper, K. L. et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature, doi:10.1038/nature20609 (2016).
  5. Braun, S. et al. A pooled analysis of bone marrow micrometastasis in breast cancer. The New England journal of medicine 353, 793-802 (2005).
  6. Pantel K, et al. Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet. 1996; 347:649–653.
  7. Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol. 1991; 9:1749–1756.
  8. Mansi JL, et al. Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years’ follow-up. Eur J Cancer. 1991; 27:1552–1555
  9. Thorban S, et al. Immunocytochemical detection of disseminated tumor cells in the bone marrow of patients with esophageal carcinoma. J Natl Cancer Inst. 1996; 88:1222–1227.
  10. Schlimok G, et al. Micrometastatic tumour cells in bone marrow of patients with gastric cancer: methodological aspects of detection and prognostic significance. Eur J Cancer. 1991; 27:1461– 1465.
  11. Weckermann D, et al. Disseminated cytokeratin positive tumor cells in the bone marrow of patients with prostate cancer: detection and prognostic value. J Urol. 2001; 166:699–703.
  12. Chery, L. et al. Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5, 9939-9951, doi:10.18632/oncotarget.2480 (2014).
  13. Ulmer, A. et al. Quantitative measurement of melanoma spread in sentinel lymph nodes and survival. PLoS medicine 11, e1001604, doi:10.1371/journal.pmed.1001604 (2014).
  14. Neves, R. P. et al. Genomic high-resolution profiling of single CKpos/CD45neg flow-sorting purified circulating tumor cells from patients with metastatic breast cancer. Clinical chemistry 60, 1290-1297, doi:10.1373/clinchem.2014.222331 (2014).
  15. Guzvic, M. et al. Combined genome and transcriptome analysis of single disseminated cancer cells from bone marrow of prostate cancer patients reveals unexpected transcriptomes. Cancer Res 74, 7383-7394, doi:10.1158/0008-5472.CAN-14-0934 (2014).
  16. Stoecklein, N. H. & Klein, C. A. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126, 589-598, doi:10.1002/ijc.24916 (2010).
  17. Stoecklein, N. H. et al. Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13, 441-453 (2008).
  18. Sosa, M. S. et al. NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nat Commun 6, 6170, doi:10.1038/ncomms7170 (2015).