

Article Optimization of a Novel Mandelamide-Derived Pyrrolopyrimidine Series of PERK Inhibitors

Michael E. Stokes ^{1,*,†}, Matthew D. Surman ^{2,*,†}, Veronica Calvo ¹, David Surguladze ¹, An-Hu Li ¹, Jennifer Gasparek ³, Matthew Betzenhauser ³, Guangyu Zhu ³, Hongwen Du ⁴, Alan C. Rigby ¹ and Mark J. Mulvihill ¹

- ¹ HiberCell Inc., 619 West 54th Street, New York, NY 10019, USA
- ² Curia, 26 Corporate Circle, Albany, NY 12203, USA
- ³ Curia, 1001 Main Street, Buffalo, NY 14203, USA
- ⁴ Pharmaron Beijing Co., Ltd., No. 6, TaiHe Road, BDA, Beijing 100176, China
- * Correspondence: mstokes@hibercell.com (M.E.S.); matthew.surman@curiaglobal.com (M.D.S.)
- + These authors contributed equally to this work.

Abstract: The protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of three endoplasmic reticulum (ER) transmembrane sensors of the unfolded protein response (UPR) responsible for regulating protein synthesis and alleviating ER stress. PERK has been implicated in tumorigenesis, cancer cell survival as well metabolic diseases such as diabetes. The structure-based design and optimization of a novel mandelamide-derived pyrrolopyrimidine series of PERK inhibitors as described herein, resulted in the identification of compound **26**, a potent, selective, and orally bioavailable compound suitable for interrogating PERK pathway biology in vitro and in vivo, with pharmacokinetics suitable for once-a-day oral dosing in mice.

Keywords: ER stress; PERK; UPR; kinase; inhibitor; cancer; diabetes; small molecule; structure– activity-relationship (SAR)

1. Introduction

Cells must match the rates of protein synthesis with demand to avoid the onset of proteotoxic endoplasmic reticulum (ER) stress. In conditions of excess protein production, an accumulation of misfolded proteins in the ER lumen induces the unfolded protein response (UPR), which arrests global translation while enabling specific processes that restore protein homeostasis [1,2]. The UPR is mediated by three discrete signaling cascades, IRE1, ATF6, and EIF2AK3 (PERK) [3]. Upon activating the UPR, PERK phosphorylates eIF2a at Ser51, leading to widespread inhibition of protein translation with a few selected regulatory proteins translated to restore homeostasis and alleviate ER stress [1,3]. In cancer, acute activation of UPR enables tumors to overcome deleterious ER stress induced by rapid cell proliferation, nutrient deprivation, hypoxia, and drug treatments [4–6]. Pharmacolog-ical or genetic inhibition of PERK slows proliferation of tumor xenografts in mice [7,8], and small molecule PERK inhibitors have recently entered clinical trials for several oncology indications, including clear cell renal cell carcinoma (ccRCC) and multiple myeloma (NCT04834778; NCT05027594).

Acute ER stress and activation of UPR restores protein homeostasis and supports cell survival, whereas long-term ER stress shifts cells toward an apoptotic cell fate [9]. While intermittent ER stress occurs regularly in cell types that produce high abundance of protein, metabolic dysfunction can result in chronic ER stress that coincides with a number of metabolic and neurological diseases [9–12]. Type-1 Diabetes (T1D) is an example of a metabolic disease and autoimmune disorder characterized by PERK hyperactivation in insulin-producing β -cells of the pancreatic islets [11–13]. Immunohistochemistry (IHC) staining of pancreas sections from T1D patients revealed PERK pathway activation in

Citation: Stokes, M.E.; Surman, M.D.; Calvo, V.; Surguladze, D.; Li, A.-H.; Gasparek, J.; Betzenhauser, M.; Zhu, G.; Du, H.; Rigby, A.C.; et al. Optimization of a Novel Mandelamide-Derived Pyrrolopyrimidine Series of PERK Inhibitors. *Pharmaceutics* **2022**, *14*, 2233. https://doi.org/10.3390/ pharmaceutics14102233

Academic Editor: Francesca Musumeci

Received: 2 September 2022 Accepted: 17 October 2022 Published: 19 October 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). insulin-secreting beta cells, relative to healthy control patient samples [13], and PERK activation precedes the destructive autoimmune attack of beta cells in animal models of T1D [12,14]. Together, these findings highlight a potential role for PERK in diabetes and possible therapeutic benefit of PERK inhibitors beyond oncology.

While some cancers and metabolic diseases are characterized by PERK hyperactivation, genetic ablation of PERK results in glucose dysregulation and pancreatitis, suggesting that some basal level of PERK activity is essential to pancreatic health [15,16]. It is possible that the attenuation of PERK activity, rather than complete suppression, could provide therapeutic benefit while supporting normal pancreatic function. To enable future testing of this hypothesis, we sought to create a series of PERK inhibitors with stable PK profiles that could be administered at low doses to attenuate PERK yet tuned through higher doses to sufficiently inhibit PERK for tumor inhibition.

Previously described medicinal chemistry efforts around PERK inhibitors have made use of a variety of core hinge-binding regions, including aminopyridines, pyrrolopyrimidines, quinazolines, and quinolines [7,8,17]. Pyrrolopyrimidine cores have been developed and approved as JAK kinase inhibitors [18,19], and modifications to the core scaffold can have profound effects on stability and selectivity [17]. Here, we optimized the pyrrolopyrimidine core and leveraged extensive SAR information from our recently reported aminopyridine series of inhibitors to guide chemistry efforts aimed at optimizing the in vivo properties of pyrrolopyrimidine PERK inhibitors [7].

Our efforts were focused on developing potent and selective PERK inhibitors with suitable pharmacokinetic profiles to enable once or twice per day oral dosing in mouse models with a flat steady state exposure profile. The goal was to avoid large differences between C_{max} to C_{12h} or C_{24h} in order to achieve a constant and sustained pharmacodynamic response. This paper focuses on the structure-based design, structure–activity relationship (SAR), absorption, distribution, metabolism and excretion (ADME), and pharmacokinetic/pharmacodynamic (PK/PD) properties of a novel class of mandelamide-derived pyrrolopyrimidine PERK inhibitors leading to the identification of Compound **26**, with the desired flat steady state exposure profile. Compound **26** was characterized in a mouse pancreas assay and has been selected for further evaluation in animal models, which will be reported in due course.

2. Materials and Methods

2.1. Biochemical Assays

The inhibitory potencies of **26** inhibition against PKR, HRI, PERK and GCN2 were evaluated in cell-free biochemical assays following manufacturer's instructions (Carna; Table 1). In brief, **26** was dissolved in DMSO and serially diluted 3-fold to generate concentrations ranging from 10 μ M to 0.2 nM in a 384-well plate using a TECAN EVO200 automated liquid handler. 10 nL stock solution was transferred into each well of a 384well assay plate by an Echo550 and an equivalent volume of DMSO was added to the control wells. To each assay well, recombinant protein was suspended in 20 μ L reaction buffer (listed below) and incubated at 25 °C for 1.5 h while shaking at 1250 rpm. Following incubation, 10 μ L of a FRET dilution buffer including 20 mM EDTA and 4 nM Tb-antipeIF2a [pSer51] (Invitrogen, Cat# PV4815) was added to each well and incubated at 25 °C for 2 h while shaking at 600 rpm in the dark. Analysis was performed using an Envision Microplate Reader (PerkinElmer).

Table 1. Reagents and conditions used in biochemical characterization of ISR kinases.

Protein	Carna Cat#	Assay Buffer
GCN2	05-153	GCN2 (1 nM); DTT (2 mM); ATP (150 μM); GFP-eIF2a (100 nM; Invitrogen Cat# PV4809)
HRI	05-154	HRI (0.12 nM); DTT (2 mM); ATP (30 μM); GFP-eIF2a (100 nM; Invitrogen Cat# PV4809)
PERK	05-155	PERK (0.09 nM); DTT (2 mM); ATP (8 μM); GFP-eIF2a (100 nM; Invitrogen Cat# PV4809)
PKR	05-156	PKR (0.11 nM); DTT (2 mM); ATP (6 µM); GFP-eIF2a (100 nM; Invitrogen Cat# PV4809)

2.2. PERK Crystallization and Structure Determination

Human PERK (575-1094 Δ 670-874) was purified as described previously [7]. Purified PERK protein at 11 mg/mL was mixed with 10 mM compound 11, 24, or 26 (in DMSO) to a final protein-inhibitor molar ratio 1:2. The PERK-inhibitor mixture was incubated on ice for 2 h before crystallization. The crystals with compound **11** or **26** were grown at 20 °C in sitting drops by combining 2.0 µL PERK-inhibitor mixture, 2.0 µL reservoir solution (12–14% PEG3350, 4% tacsimate pH7.0), and 0.4 μ L seed stock which was equilibrated over a 500 μ L reservoir solution. The crystal with compound 24 was grown at 4 °C in a hanging drop by combining 1.5 μ L PERK-inhibitor mixture, 1.5 μ L reservoir solution (9% PEG3350, 180 mM Na/K tartrate, 100 mM HEPES pH 7.0) which was equilibrated over a 500 µL reservoir solution. The crystals were grown to 0.2–0.5 mm over a three-week period before harvesting for analysis. The crystal was transferred stepwise to a cryosolution with the crystallization cocktail plus 20% glycerol before being frozen in liquid nitrogen. Diffraction data were collected at the IMCA-CAT beamline 17ID for compound 11 or GMCA-CAT beamline 23IDD for compound 24 or 26 at the Advanced Photon Source at Argonne National Laboratory using a Pilatus 6M detector. The diffraction images were processed with DIALS [20] and scaled with AIMLESS [21]. The structure was solved by molecular replacement using PDB 4X7J [17] as starting model by Phaser [22]. The structure was manually built using Coot [23] and subsequently refined using Refmac5 [24]. The crystallographic figures were generated by CCP4MG [25], and the statistics of data collection and refinement are summarized in Supplemental Table S1.

2.3. Pharmacokinetic and Pharmacodynamic Analysis in Plasma and Pancreas

For PK analysis of pyrrolopyrimidine analogs in mouse, rat, and dog plasma, the oral formulation was prepared as a solution containing 20% (w/v) Captisol in 25 mM NaH₂PO₄ buffer (pH 2). Compounds were administered orally by gavage at 10 mg/kg to female CD1 mice. After dosing, plasma samples were collected to characterize the PK profiles at 0.25, 0.5, 1, 2, 4, 8, 12 and 24 h post-dose. The plasma concentration of compound was determined by protein precipitation with acetonitrile and liquid chromatography with mass spectrometric detection (LC-MS/MS). Parameters were estimated using Phoenix (WinNonlin) pharmacokinetic software version 6.1.0 using a non-compartmental approach consistent with the oral route of administration. PK analysis of **26** in plasma and pancreas followed a similar analytical method as above, with minor modifications. Compound **26** was suspended in a vehicle consisting of 0.5% methylcellulose (400 cP) and 0.1% Tween80 in water and administered to BALB/c nude mice by oral gavage at 0.3, 1, 3, 10, 30 mg/kg. Plasma and pancreas were sampled from 5 mice per group following a single oral administration at 1, 4, 8, 12, 24 h post-dose.

Total protein was extracted from pancreas tissues sampled during PK studies described above. Frozen pancreas tissue was homogenized by polytron in lysis buffer consisting of 2x Laemmli SDS sample buffer (Novex), supplemented with 10% BME (Gibco), 1X benzonase (EMD Millipore Sigma), phosphatase inhibitors (Sigma) and Mini protease inhibitor tablet (Roche). Homogenate was incubated at room temperature for 10', then boiled for 10', followed by centrifugation for 10' at max speed on a benchtop centrifuge. Protein analysis performed using JESS high-throughput protein analysis instrument (Biotechne) using antibodies for phosphoPERK developed internally and PERK (CST).

2.4. Biochemical and Cell-Based Characterization of Pyrrolopyrimidine Analogs

Methods used to evaluate biochemical PERK activity are described and published elsewhere [7]. In brief, biochemical PERK activity is evaluated using a LanthaScreenTM (PerkinElmer) TR-FRET assay to detect phosphorylation of a GFP-tagged eIF2a substrate (ThermoFisher). Excitation at 340 nM of a terbium chelate donor fluorophore in an eIF2a antibody results in energy transfer to GFP acceptor fluorophore upon eIF2a phosphorylation by PERK. Reaction buffer was composed of 50 mM HEPES (pH 7.4), 10 mM MgCl₂, 1 mM EGTA and 0.01% (v/v) BrijTM-35. Reactions were initiated by the addition of substrate and

ATP, followed by incubation for 1 h at RT prior to addition of EDTA and the anti-peIF2a antibody. FRET was measured by an EnVision Plate Reader (PerkinElmer). Data were plotted as percent inhibition along a 10-point 3-fold dilution series of inhibitors. IC₅₀ values were calculated using 4-parameter logistical fitting in XLFit.

Methods used to evaluate in vitro cellular PERK inhibition are described and published elsewhere [7]. In brief, stableHEK293 cells were created using lentiviral particles harboring a GFP-eIF2a expression vector. Transfectants were selected by puromycin and enriched using fluorescent cell sorting based on GFP expression. HEK293-EGFP-eIF2a cells were plated at 5000 cells/well in 384-well assay plates and incubated overnight. The following day, pyrrolopyrimidine analogs were added to wells using an Echo acoustic dispenser and incubated for 30 min. ER stress was induced by the addition of tunicamycin to the wells at 1 mM for 2 h. Cells were lysed and peIF2a was evaluated using a TR-FRET system, as described above.

2.5. In Vivo Tumor Xenograft Studies

In vivo studies of the effect of pyrrolopyrimidines on 786-O xenograft inhibition follow a method published elsewhere [7]. Female BALB/c nude mice were inoculated subcutaneously with 786-O tumor cells (5×10^6) in 0.1 mL of PBS. Animals were randomized when tumors reached 100–200 mm³ into treatment groups. Pyrrolopyrimidine PERK inhibitors **24**, **26** or **70** were dissolved in vehicle solution consisting of 20% (w/v) Captisol in 25 mM NaPO₄ buffer (pH2) and administered twice daily (BID) by oral gavage for 29 days. Tumor volumes were measured by caliper and the volume was expressed in mm³ using the formula: V = (L × W × W)/2, where V, L, and W represent tumor volume, length, and width, respectively. All studies were conducted following an IACUC-approved protocol (AN-1903-05-1798). Experimental data management and reporting were in accordance with applicable Crown Bioscience's Guidelines and Standard Operating Procedures.

3. Results and Discussion

Small molecule PERK inhibitors across a variety of chemotypes have been previously described in the literature and captured in an earlier publication from our group around an aminopyridine series of PERK inhibition [7]. Herein, we report the synthesis and discovery of a series of novel mandelamide-derived pyrrolopyrimidines (I) that are highly potent, selective, and orally bioavailable PERK inhibitors. These medicinal chemistry efforts were iteratively supported by an X-ray crystallography structure-based approach to develop and refine SAR information. Collectively this approach permitted us to optimize the physiochemical and ADME/PK properties of this chemical series. Different R¹, R², R³, Ar and L groups have been introduced into our PERK small molecule series to tune the potency, selectivity and drug-like properties, such as aqueous solubility and cellular permeability.

The general synthesis for our pyrrolopyrimidine PERK inhibitors is shown in Scheme 1. The terminal ring substitution with different R² groups was introduced through the corresponding aldehyde 1. Cyanohydrin 2 formation with TMS-cyanide and zinc(II) iodide followed by acid hydrolysis of the nitrile in methanol provided methyl mandelic ester 3. Hydrolysis of the ester with lithium hydroxide and acylation of the benzylic alcohol gave the protected mandelic acid 5.

The proximal ring substitution with different \mathbb{R}^3 groups was introduced through bromo aniline **6**. Palladium-mediated borylation of **6** to give the aniline boronate ester **7** was followed by T_3P coupling with acid **5** to provide amide **8**. Boronate ester **8** underwent Suzuki coupling with pyrrolopyrimidine bromide **9** to give racemic acetyl-protected product **10**. Deacylation under basic conditions followed by chiral separation of the enantiomers provided the final product **I**.

sEnterne 1. General synthesis of PERKinhihiteors. Preciense colitions. (J. P. A. C. 1997) Scheme 1. General synthesis of 1 ERK inhomous: Reaction containers: (a) This Given the Granning (1, 2, 3, 4) and (1, 4) and $rt_{7}5\%, 80\%_{2}$ (c) X2host Rd, Gwl Orm Pl; 80) 982 C Register of statistic statistic of the statistic o

(2 equiv.), MeOH, rt, 80–90%; (i) Chiral SFC separation.

(2 equiv.), MeOH, rt, 80–90%; (i) Chiral SFC separation.
The proximal ring substitution with different R³ groups was introduced through The PERK activity of analog I was evaluated using cell-free biochemical assays. In 7 these assays, PERK phosphorylation of eIF2a was assessed using a FRET-based labelled was followed by T³ coupling with acid 5 to provide amide 8. Boronate ester 8 under went protein assay. [7]. Compounds were then evaluated for cellular activity by quantifying. Suzuki coupling with pyrolopyrimic ine Brownic acetyl-protected product in the transport of eIF2a phosphorylation in HEK 293 cells freated with the ER inducer tuni-uct 10. Deacylation under basic conditions followed by chiral separation of the enantio-camycin [7]. Together, these data read out the potency of a given analog against PERK as mers provided the final product I.
well as the cellular permeability to enable bioactivity. The PERK activity of analog I was evaluated using cell-free biochemical assays. In Initial SAR studies in the pyrfolopyrimidine series focused on the linker (L) region the sense spece section of the central amide and terminal aryl ring (Table 2). Hydroxyl substitution on this protein assay [7]. Compounds were then evaluated for cellular activity by quantifying the east of the central amide and terminal aryl ring (Table 2). Hydroxyl substitution on this protein assay [7]. Together, these data read out the potency of a given analog against PERK as mers provided the final product I.
well as the cellular permeability to enable bioactivity. The PERK biosphorylation of eIF2a was assessed using a FRET-based labelled between the central amide and terminal aryl ring (Table 2). Hydroxyl substitution on this protein assay [7]. Compounds were then evaluated for cellular activity by quantifying from the enartion of eIF2a, phosphorylation of eIF2a was assessed using a free biochemical assays. In Initial SAR studies in the pyrolopyrimidine bere between the central amide and terminal aryl r

tion of the linker also caused a substantial loss in potency, as did replacement of the CH(OH) Initial SAR studies in the pyrrolopyrimitine series focused on the linker (L) region group with an O, NI, or NCH3 group (13 vs. 17, 18, 19, and 20, respectively). Seven-fold between the central amide and terminal arvl ring (Table 2). Hydroxyl substitution on this losses in both biochemical and cellular potency were observed when the hydroxyl group was converted to the methyl ether (13 vs. 21). Even more substantial losses were associated over the (S)-enantioner (11 vs. 12). Expansion or contraction of the length of the linker (L) with replacement of the hydroxyl with a mino group (13 vs. 25). Addition of a methyl group to the interference potency by a stantial losses were associated over the (S)-enantioner (11 vs. 12). Expansion or contraction of 25). Addition of a methyl group to the linker of the hydroxyl with a mino group (13 vs. 25). Addition of a methyl group to the linker of the hydroxyl and the another substantial bosses in performence of the potency group to the linker of the hydroxyl with a mino group (13 vs. 25). Addition of a methyl group to the linker of the hydroxyl action of a substantial bosses in performing and the respectively. Diffuor (13 vs. 22). Based on these indines, it was concluded that it. (14 respectively). Difluoro Lsubstitution of the linker also caused a substantial loss in potency, as did replacement of the CH(OH) group with an O, NH, or NCH₃ group (13 vs. 17, 18, 19, and 20, respectively).

Seven-fold losses in both biochemical and cellular potency were observed when the

		nieo wiu Din Frank				
				ME AVEROXY W		RICH CANDAR
				Michings Alewas	CONTRACTOR CONTRACTOR	RICE AGAINTS
Pharmaceutics 2022 , 14, 2233	Table Division of the second s				conclaige othat	
	Table for the second se					
	Table 24 in vitro de					<u>p-en-200</u>
	<u>Lable Thr</u> vitro da		N N 3 CH			
	<u> </u>					
	Catapad			NH	1 (2:5013 /1) 	ICGRIZENT)
	Cmpd		H ₃ G			IC ((RM)
	<u> </u>					
	pa 				<u></u>	<u></u>
		齳	NOT			
	12	Ħ		i i i i i i i i i i i i i i i i i i i		
	12 14			×.	01.0102758 A.AA72	01.057 A.A41
	14	li H	NO REAL			
	靜	Ħ	1/2000/	F	0,0052	01041
		- 1	Kent-		00052	
	16	間	No.		COCIES	
Pharmaceutics 2022, 14, x						0.074 of 21
Pharmaceutics 2022 , 14, ×	16		<u>F_F</u>		<u>8.168</u>	3.86 of 21
Phanmaceutics 2022 , 14, x			F-F		0.0052	0,9 32 of 21
Pharmaceutics 2022 , 14, x	<u> </u>	Ħ			09.38	01532 of 21
Pharmaceutics 2022 , 14, ×	17				<u>60338</u>	0.532 of 21
Pharmaceutics 2022 , 14, x	18				N 1 2 6	4559 of 21
Pharmaceutics 2022 , 14, x			<u></u>			21 1 1 1 1
Hhammaaeuttas 20222, 14, x	18		H213 13		3.98	10,0 off 221
Pharmaceutics 2022, 14, x			HOT STI3			4 1 1 1 1
			H H			
		I	HOLE IS			
			H¢ 20			
		Ne le	HIDS OF 13			
		Ne				
	20	N				0.001
	20	N	HLOGHUN'S		8,168	0.55
	29	Ň			0.103	0.55
	20	N	ST.			azet
	24	Me	× ×		000028	0.005
	25	Me	T		()(1)(1)	0,010
	20	Me	E H ₃		000028	0.1073
	25	Me	X		0.0028	02,0015
	25	Me			(00)023	02015
	257	Me			0048	0,303
	25	Me	X		0.0918	02015
	26	Me			0.0028	0.015
	26	Me	N. C.		00028	QQ15
	20	Me			0.0008	0.013
		Me	***		(0.1913	0.718
	29	Me			001123	Q713
	29	Me			000048	0.783
	28	Me			OMM	0.085
		140) series	Contraction of the second	0a 0a0at=0	ABAA

26 Me hydroxyl group was converted to the methyl etner (3 vs. 21). Even more substantial losses were associated with replacement of the hydroxel with an antimo group (13 vs. 23). Addition of a methyl group to the linker to form a tertiary alcohol (13) acaused a signature loss in potency (13 vm22). Based on these findings, it was conclementation (R)-(2003H) is the metormed L group

Pharmaceutics 2022, 14, 2233

the proferred L group 000343 020015 0.0018 0.016 Table 2. In vitro data of ERK inhibitors Table 20Cont. 000013 0.016 Me 0.013 26 Me m 0.00Fs R^1 29 Me 0.107 0.713 HOLES OF 29 Me *Pharmaceutics* **2022**, 14, X ′8£ 21 0.**743** 31 M 0.004 Pharmaceutics 2022, 14, x of 21 C.014 C50 (IIIXI) Cmpd Sipo Pharmaceutics **2022**; 14; X Pharmaceutics 2022, 14, x 0.002 0.002 0.0059 0.0084^{f 21} Pharmaceutics 2022; 14; * Pharmaceutics 2022, 14, x 0:047 of 21 0.009 0.019 of 21 33 Me Pharmaceutics 2022, 14, x 鹘 袖 **0,0,2**00f 21 Pharmaceutics 2022, 14, x 0.0078 罪 Me Pharmaceutics 2022; 14; * **QQ25**0f 21 5 Me **6.5** of 21 Pharmaceutics 2022, 14, * Pharmaceutics 2022, 14, * 0.0018 0.023^{of} 21 13 30 Mê **THE**) () (AL P.8019 2.44 卵翻鞘 0.0026 achters Æ 88642 6932 鍧 Me 0:010 **印·**耶姆 HHHBHBHS HEVE FEVERIES HERE CAHOHS TO THE P VIOUSLY PEPO NO SAR OF PER

Providually reported SAR of PERC inhibitors in vertexealed in orderations to an interbinding version to be a set of the set of the

Previously reported SAR of PERK inhibitors have revealed modifications to the hinge binding region that have profound effects on binding affinity to PERK as well as selectivity versus the kinome [7,17]. Structure based design modelling was used to focus efforts on optimizing the pyrrolopyrimidine hinge-binding region of the molecule. Inhibitor 11 was co-crystallized with PERK into a trigonal space groupP3₂21 with comparable cell parameters as PDB 4X7O. Compound 11 formed three hydrogen bonds directly with the carbonyl of Q889, the amide of C891, and the carbonyl of F956 from PERK, respectively (Figure 1A). In addition, compound **11** forms two hydrogen bonds with a water molecule, and this molecule hydrogen bonds to the amide of V652. In the ATP binding hinge region, substitution at the C2-position (R1) of the pyrrolopyrimidine ring appeared feasible, filling a small pocket near C891. A methyl group located at the R1 position of compound 11 afforded analog 24 whose co-crystal structure with PERK confirmed the occupation of the small pocket near C891 along with the close contact of the C2-methyl group with the carbonyl of C891 with a distance of 3.14 A (Figure 1B). Although a weak CH…O hydrogen bond is feasible, this contact appears to be more repulsive. As a result, a small rotation of the main chain amino acid Q889 and L890 of PERK, along with a minor shift of the pyrrolopyrimidine ring of inhibitor 24 are observed compared to those in the structure of 11 (Figure 1C). These shifts maintain the hydrogen bonds with similar distances. Due to a lower resolution (2.92A) of the compound 24 structure (Table S1), the aforementioned water molecule in the compound 11 structure was not observed. This water molecule is assumed to locate at the same position, as all hydrogen bond doner and acceptor atoms are still presented at similar positions in the compound 24 structure. These observations indicate that the reduction of potency of 24 is likely caused by repulsion from the methyl group rather than the disruption of the hydrogen bonding pattern.

While having a minor effect on PERK potency, the methyl substituent on the pyrrolopyrimidine ring had a profound effect on the kinase selectivity. Compounds **11** and **24** were screened in the DiscoverX scanMAXSM panel of 468 kinases [26]. The resulting TREEspotTM interaction maps (Figure 2) revealed that the methyl substituent in **24** led to superior selectivity versus **11**. The S(35), S(10), and S(1) selectivity scores at a concentration of 1 μ M were 0.005, 0, and 0 for **24** versus 0.072, 0.035, and 0 for **11**. Given the superior selectivity of **24** but slight loss in potency versus **11**, further optimization of the series was carried out with the 2-methyl substitution on the pyrrolopyrimidine ring to further improve potency and drug-like properties.

Exploration of the terminal aryl ring revealed several trends (Table 2): (1) Substitution at the 3-position was preferred to substitution at the 2-position of the ring (compare 24 vs. 25, 26 vs. 27, 28 vs. 29, and 30 vs. 31). (2) Lipophilic substituents, such as CF_3 , Cl, Br, CCH, CF_2H , and *c*-Pr provided enhanced biochemical and cellular potency compared with F substitution (24 vs. 26, 28, 33, 32, 34, and 35) leading to the recovery of the potency lost with the incorporation of the selectivity-enhancing 2-methyl pyrrolopyrimidine ring (compare 11 vs. 24 and 11 vs. 26, 28, 33, and 32). (3) Polar substituents were not well tolerated and resulted in substantially reduced cellular potency, as in the case of CN derivative 36, or in complete loss of activity (biochemical and cellular activity at the concentrations tested), as in the case of sulfone analog 37. (4) 3,5-Di-substitution with lipophilic groups provided further enhancements in potency (38, 39, 40, and 41). Interestingly, addition of a fluorine substituent to CN on the terminal phenyl ring largely reversed the loss of cellular potency due to the CN group (36 vs. 42). (5) Replacement of the terminal phenyl ring with heterocycles, such as F-, Cl-, or CF₃-substituted pyridines, resulted in 8- to 11-fold losses in cellular potency (compare 24 vs. 43, 28 vs. 44, and 26 vs. 45).

Figure 1. Erystal structures of HERKinvith selectation biointa 11. (A) and 24. (B) a Overlay of the crystal structures of Hand 24. (C) in The name origination is presented of panelse free RERK has been is shown as a ribbon of solid strand involves for 11 and 24. (C) in The name origination is presented of panelse free RERK has been is shown as a ribbon of solid strand involves for 11 and 24. (C) in the name origination of the presented of panelse free RERK has been is shown as a ribbon of solid strand involves for 11 and 24. (C) in the name origination of the present of the panelse free RERK has been is shown as a ribbon of solid strand involves for 11 and 24. (C) in the same color solid strand in the presence of the panelse of t

While having a minor effect on PERK potency, the methyl substituent on the pyrrolopyrimidine ring had a profound effect on the kinase selectivity. Compounds **11** and **24** were screened in the DiscoverX scanMAXSM panel of 468 kinases [26]. The resulting TREEspotTM interaction maps (Figure 2) revealed that the methyl substituent in **24** led to superior selectivity versus **11**. The S(35), S(10), and S(1) selectivity scores at a concentration of 1 μ M were 0.005, 0, and 0 for **24** versus 0.072, 0.035, and 0 for **11**. Given the superior selectivity of **24** but slight loss in potency versus **11**, further optimization of the series was carried out with the 2-methyl substitution on the pyrrolopyrimidine ring to further im-

· 1 1 1·1 ··

Figure 2: The TREEspotTM interaction map of **11** and **24** assayed at 1000 nM in the 468-kinase scanMAXSM panel. The panel includes 403 unique wild-type kinases and 59 mutant isoforms. Note that PERK is not included in the TREEspot assay but was evaluated in separate biochemical assays. Complete tabulated results presented in Supplemental Table S2.

Exploration of the terminal arvl ring revealed several trends (Table 2); (1) Substitu-Next, the SAR of the proximal arvl ring was examined with new analogs incorporating tion set the Banaition wear preferred than Patientian of the ring compare, 34 vs. 25, 26 vg. 27, 28 vg. 29 prind 30, 49, 33) (2) Eizophilic substituents, such as CFa Gle Br. ReplaceField, and & Brokringided enteriored bighterical tander, ell, Uar Epgtency was mared with Eventstitution (244 v. 26468, 533, 272 349) and 25) leading to there covery of the potency best with the incorporation at the selectivity anhancing to pethylipy and by which is ring ezsted and rasulted ivosubstantially rada cer callular meteracians the energic Schalering (24 e.36,62r in C 38) plots loss of activity dischemical pool cell year a civity of the cover entry Cipyo tratech 30 ieptaccasen of (24/49.161analogo)?7A/Hino Di substitution osithulipophilic stoxinsaprovider further ten have gents in materia 138 39 cellu and 512 nevertingly tott dition of biblewine at betievent the behanch to wine phane is included the bose 3,5cBlinlethpotonoxialue tinther (BS) graups (88) pr 12) id Ed Replacement inf the terminal placend 3ifigovit/5heteropyales/og 67.aMev Chenr Aftheutratined upyridines, resulted is-Bostiibh 60th losses in call what (460eno xthe 2 provided 4 v6913h 28 vat 14 in rad 26 or the biochemical or cellulalepotence article the position and and the position of the second s 46 sibulary badstittle characterize polician futer of the hear of the second scale of the second sec VaCIEtiBh; iB-CHePbjo2kCethicPH; CaEt-Was30B5exVedR(46ared 34Fa5aC171)PHSexPerc(Fablet 3). Repriaximal photo be the pingxin 24 with methylis no still and with a Fn Closet (2 gto Gpf or d) to seed ito tellwlall potenaty (224/s.s726):53,74), d59)), eTofestee closen gesten othe control banatstioner down deplacing biereer with Ining for the Fo (72 veri72 nate 175 ver 74). We have been with the proking here is a second second ring of 34 with a priniver in 1979 48 152, 1512, a ved dessubing sin a 2016 la bosen di a 200 mical polensyere descripted of since War and Will a nactivity of Haven 76) to on the proximal ring (24 vs. 62 and 58). More substantial reductions in potency (8- to 36-fold) occurred with CF₃O and b with communications in the second state of the second se

Pharmaceutics 2022, 14, 2233

, ,	and complete los	in cellular activit				
	Table 2 No subra d	the of Herein group and		and termined Friend Madification (III)		
	T <u>able 3. In vitro da</u>	a of PERK infibitions	with proximal and te	a termina ring modifications.		
	Table 3 Novitro da	ta of PERKInkibitor	s with proximal and t	erminal cripture diffic	<u>cation (11)</u>	
	CMpd			I (PE (PAN)	Ip Galifety)	
	Chipd		APP-NOH ON BA	IG _{ØK} (pred)	IGGQ(#M)	
	Copped	Hier	Ar-NH OH R F	- HERKKAM)	ITCS (15M)	
	NNo. 24		$\mathbf{R}_{\mathrm{F}}^{2}$		IIC 50 ((MIMI) 0.051	
	46			- 0.0022	0.041	
	46		<u></u>	0.0022	<u> </u>	
	46	—; гу —; н; 4 —	3-F	0.0022	0.031 0.041	
	2446		3-19-1- 3-37-1-	0.000020	0.00.5061	
	47 46		3-CF ₃	0.0051	0.011	
	47 46		3-CF3 3-3-F	0.0051	0:011	
	4 7 46		$3 - CF_3$	0.0051	0.011	
	447		3-16-F13	0.00221	0.0401	
	472	F F	3- 6-1	0.000000	00.010	
	48 47		$3-CF_3$	0.0010	0.010	
Pharmaceutics 2022, 14, x	48 47		3-CI 3-CF ₂	0.0010 0.0051		
Pharmaceutics 2022 , 14, x	4748		33-GECI	0000000000	0.0113 of 21	
Pharmaceutics 2022, 14, x	48		3-61	8.8819	8.819	
Pharmaceutics 2022, 14, x	48		3-Cl	0.0010	0.010 of 21	
Pharmaceutics 2022 , 14, x	48		3-B-S-Me	0.0010011	0.010 of 21	
Pharmaceutics 2022 , 14, x	489		33514e 3-F, 5-Me	0.0019	0.0.1113 of 21	
Pharmaceutics 2022, 14, x	49		33 HE Me	0.000009	0 0173 of 21 0 00055	
<i>Pharmaceutics</i> 2022 , 14, x	49		3- <u>F3-M</u> e 3-F <u>3-E</u> Me	0.0009	0.0113 of 21 0.025	
	499		33Me 33FMEMe		0.05%	
	- 3 18		3- F 5 5 F 3 3-F ₂ 5 Me	0.0030927	000052	
			3- E 3 E Ne		0.053	
			33-53-55 Fe			
	561		3-3-20-CF3	0.00027	0.02652	
	53 Sk	E BERNE	3-F2 545F2	6 6 6 4 4 7 6 6 6 6 3 7	0:0 50 0.067	
	N		3-B-F-3-9 3-B-54CF3	0.0027	0.063	
			3-E35-CF3	0.0015	8:835	
	5155		3-F, 5-CF ₃	0.0027		
	37# 55		3-0-13-3-3-3-3-3-3-3-3-3-3-3-1-3-3-3-1-3-3-3-1-3-1-3-3-1-3-1-	0.002/02/ A.AAJ6	8.847	
	55		3-CI3	0.0027	0.021 0.017	
	34		3-0-C	0.0010016	00077	
	55		3-Me	0.0048	0.018	
	55		3 <u>-M</u> e	0:00 1 8	0:018	
	54		3- <u>NA</u> P	0.0 04084 1	0 2 23 3	
	36		3-Me	0.0041	0.018	
	58		3 ³ .Net	0900229	0.018	
	3%		3-2-14-16	0.0596241	0.09.104 8	
	38		3_{3}	8:8841	8:263	
	57		3-Et	0.059	0.014	
	399 58	I REAL FOR THE REA	3-32-Et ∂-E	0.009.039	09.014	
	57 58		3-Et 3-F	0.059	0.204	
	₹7	F C	3- 5- 3- 5-	0.0040549	084944	
	58 58	F	3-F	0.0000	0.201	
	58	FREE E	3=F	0:0049	0:264	
	58		3-E	8:8848	8:944	
	59	₽ ₽ ₩e	3-F	0.0040	0.041	
	59		<u>3-F</u>	0.000346	010845	
	59		₹ F	0.00340	0.041	
		Med		G TO AD	d.941	
	60 41	F SC	3-F	0.236	1.85	
	60 61	E	3-F	0:236	4:83 0.435	

biochemi**S** data was observed (46 vs. 70 and E_1). Replacement (59)the proximal plaenyl ring of 24 with a pyridine ring resulted in modest (2- to 3-fold) losses in cellular potency (24 vs. 72 and 74). Some of the lost potency could be restored by replacing the terminal ring F with CF₃ (73 vs. 72 and 75 vs. 74). Replacement of the proximal phenyl ring of 24 with a pyshnidine ring was not tolerated, resulting in a 30-fold losson biochemical potency of a same base in cellular potency (24 vs. 72 and 75 vs. 74).

Pharmaceutics 2022, 14, 2233

		in cellinar activity	/ (24 vs. 76)_E	0,0085	0.204
	59 T-11-2 158		о-г 3-Е	0.0040 8.8885 1.c	8.294
	Table 3. 15% tro dat		s with proximal and <u>3-F</u>	0.0085	0.204
	59	F_3	<u> </u>	0.0040	0.041
	88			0,0040	01041
	Contrad		Ar-NH OH 3-F	PERREAC	p-elf2y
	N 059 60	MeOXX_N 	3-F 3-F	0.236	1.85
	<u>69</u> -	Met T	R3-E	- - 0,236	4.835
	<u>89</u>		<u></u>	<u>8.235</u>	0.435
	φ		3- B -F	0.2\$6236	1,8585
Pharmaceutics 2022 , 14, x	241	H E	3- F Г Э.Б	0.020-3	0.05 ⁴ P _{14 of 21}
Pharmaceutics 2022 , 14, x		F369	्रेन् म	0.0620	0:4-25 14 of 21
Pharmaceutics 2022, 14, x	81	F3CO	3-} ₽ 2-E	0.0490420	04426 14 of 21
Pharmaceutics 2022, 14, x	462		3-F 3-F _{CE}	0.0020	0.941126 0.94112 of 21
Pharmaceutics 2022, 14, x			<u></u>	0.0020020	001126 0 0424 of 21
Pharmaceutics 2022, 14, x	<u> </u>		<u> </u>	<u>9:9920</u>	0.044 of 21
Pharmaceutics 2022, 14, x	<u> </u>		<u>3-6-16-17-3</u>	0.0 00000<u>2</u>00 - 00.000115	001125
Pharmaceutics 2022 , 14, x	4075		<u>3:00</u>	0.090928	<u>())))))))</u> ()))))))))))))))))))))))))))
Pharmaceutics 2022, 14, x	(7) (7)	<u></u> нія		0.00000	0001443
	465		<u>3966</u> 63	<u>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) </u>	<u>(),(),(),()</u>
	48 TAC		3 -5-1	0.001994	
	(Bale)		- 334pr	0:0019	0.030
	05		3 -₽r	0.0019	0.030
	65 ~		3- 3- F	0.0000018	00.038
	465		3-1 914		0.0.038
	685~		<u>3</u> -F	<u> 0.0073</u>	6.6578
	68 ~		3- 3-F	0.0 02023	00.088
	508≈		3 <u>-</u> 3-Ét_	0.00093	0.923
	68 ⁹ ~		3-F	0.015	0.082
	688~	HI C	3-译毕	0.013013	0.08282
	636-		3 : F	6,6013	0:022
	5459		3-F, $3-F_3$	0.00013	08.824
	68	H ₃ C	3- <u>3-</u> F	0.00:0019	00.23
	709		3-F 3-F	$0.0010 \\ 0.0015$	$0.026 \\ 0.024$
	769- 70	 	3-F 3-F	0.0010 0.00:0015	0.036 001924
	78 -		3-F 3-F	0.0010	0.024
	⁷¹ 70		$3_{3}F_{F}$	8.0013	0.034_{4}
	7 <u>1</u> 0		3- 3- E	0.09.19912	000884
	72		3-E	0.0019	0:024
	7 <mark>1</mark> ~		3-F 3-F	0.0017	0.034
	74 ~		3- B 3-F	0.0879670	0.6.6334
	73		3-E 3-CF3	89470	8:837
	742	-+ ;	3-E 3-6+CF3	0 89943	0.195
	72		3-F 3-CF ₃	0.017	0.105
	72		3-F 3-CF ₂	0.017	0.105
	義		3- 3 = F	0.008301833	09:495
	扫			0.0033	Ø.195
	$\frac{73}{74}$	H ₃ C H		0,0083	0,146
	74		232E	0.013	Q.146
	75 74		3=CF3 23-E	0:0068 QQQ&3	0:095 Q.146
	73 74		3 -6 F3 3-F	0.0068 0.0083	0.095 0.146
	⁷ 5 74		$3-\overline{CE}_{3-F}$	0.0068 0.0083	$0.095 \\ 0.146$
	75		3- <u>CF</u> 3	8.8853	0.095 0.146

biochernizcal data was observed (46 vs. 70 and 31); Replacement of the proximal pheny 05 ring of **24** with a pyriding resulted in modest (2- to 3-fold) losses in cellular potency (24 vs. 72 and 74). Some of the lost potency could be restored by replacing the terminal? ring F with CF₃ (73 vs. 72 and 75 vs. 74). Replacement of the proximal phenyl ring of 24 with a pyrimidine ring was not tolerated, resulting in a 30-fold loss in biochemical potency₀ -3 CE_{2} 0.013 -0.051and complete loss in cellular activity (24 vs. 76)-CF3 <u>0.013</u>

3-CF3

0.013

0.051

Pharmaceutics 2022. 14. 2233

74 C Gapp da NNo.	$\begin{array}{c c} - & - & - \\ H_{3C} \\ H_{3C} \\ H_{3C} \\ H_{3C} \\ H_{3C} \\ \end{array} $	арана и страна и стр	0.0083 HEBRIK 0.0083 HCGG((44M))	0.146 p -eIF2 a NC50 (wM)
		<u>R²</u> 3-CF ₃		0.09
7 5 5 24		3-CB3-CF3 3-F	$0.0068 \\ 0.020 \\ 0.020$	$\begin{array}{c} 0.095 \\ 0.051 \end{array} $ 0.09
7 6 6		3-F 3- F	0.647 0.647	>10 >10
#6		3-F 3-F	0.00220.647	0.041 >10

~Racemic mixture of alcohols.

~Racemic mixture or alcohole stully identified a number of PERK inhibitors that demonstrateups Reampaigh with a study of a bigger of a mismber of BERK in his one that idemonstiated bioEhthasabash delloularspheridity. Chuese permissibility ophasonand steere invalues to the second state of the second inavitraça Divite astavisti a de source source de la funder of rence de la funder of rence de la funder de la ing d fri and he patocyte stability bredetergy bed bein drug piken properties all about the general, the tion of 24 (efflux ratio of 5.2), the compounds showed little to no efflux. Plasma protein binding was found to be high across all species tested, a characteristic common for many kinase in hibitors. 0.017 0.0011 3-Me

Table 4. Solubility, permeability, plasma protein binding and hepatocyte clearance properties of selected PERK inhibitors.

Kinetic Cmpd Aqueous No. Solubility (μM)	Kinetic	Caco-2	50	Plasma Pro	tein Binding	3-1	Et	Hepatoc	9 yte Clea	arance $\binom{0}{1/2}$	⁵ ₂ min)
	Aqueous Solubility (μM)	$P_{app} (A \rightarrow B)$ (10 ⁻⁶ cm/s)	Efflux Ratio	Human	Rat	Mouse	Dog	Human	Rat	Mouse	Dog
26	19	21	2.2 51	99.8 ± 0.0 -	9 <u>.8</u> ±0.0	99.9 ± <u>3</u> 0µ0 5	2925 ± 0.0	¹⁹⁴ 0.002	7166	¹¹⁸ 0.06	2130
28	35	23	1.9	99.8 ± 0.1	99.7 ± 0.0	>99.9	98.3 ± 0.3	778	27	62 0.00	355
65	58	26	1.6	99.6 ± 0.1	98.9 ± 0.0	99.3 ± 0.2	98.7 ± 0.1	390	22	64	567
24	76	9	5.2	99.2 ± 0.2	99.1 ± 0.2	99.4 ± 0.0	97.0 ± 0.4	733	23	31	>1000
41	24	20	2.5	99.6 ± 0.2	99.5 ± 0.2	99.9 ± 0.0	98.8 ± 0.3	68	16	24	232
39	10	16	2.0	99.9 ± 0.0	99.9 ± 0.0	>99.9	>99.9	277	252	320	223
38	19	19	1.9	99.0 ± 0.1	99.1 ± 0.3	99.2 ± 0.3	98.4 ± 0.1	897	121	805	460
48	14	24	1.6	99.9 ± 0.0	99.6 ± 0.0	99.8 ± 0.0	99.6 ± 0.1	556	25	53	215
66	61	24	1.5	99.3 ± 0.2	98.6 ± 0.1	98.8 ± 0.2	98.2 ± 0.2	358	13	167	39
70	66	29	1.7	99.4 ± 0.0	99.3 ± 0.1	99.7 ± 0.1	99.4 ± 0.1	360	15	45	268

In vitro metabolic stability was assessed in human, rat, mouse, and dog hepatocytes. In general, the compounds were found to be relatively stable in human and dog hepatocytes and exhibited long half-lives. For several compounds (28, 65, 24, 41, 66, and 70), stability was reduced in rodent hepatocytes, particularly rat. Compounds with alkyl groups (i.e., Me) on the terminal phenyl ring tended to have lower stability (41 vs. 39). Several compounds (26, 39, and 38) maintained good metabolic stability across all species tested.

To connect the in vitro ADME results with the in vivo setting, select compounds (26, 28, 65, 24, 41, 39, 38, 48, 66, and 70) were examined in mouse PK studies (Table 5). All of the compounds showed robust oral exposure with C_{max} values for most compounds >8000 ng/mL and AUC_{0-last} values >25,000 h·ng/mL. The compounds also showed good in vivo half-lives of 2–3.5 h and excellent bioavailability (\geq 70%) apart from compound 41. Compound 26 stood out with a particularly attractive pharmacokinetics profile with C_{max} of 17,200 ng/mL, AUC_{0-last} of 126,019 h·ng/mL, half-life of 3.5 h, and bioavailability of 82%, a significant improvement over our earlier analog 24 and was therefore chosen as one of the key leads in this series PERK inhibitors.

Compound	C _{max} (ng/mL)	AUC _{0-last} (h·ng/mL)	t _{1/2} (h)	F (%)
26	17,200	126,019	3.5	82
28	14,067	65,764	2.4	84
65	8150	40,105	2.2	129
24	13,100	37,495	2.1	77
41	12,467	26,010	2.7	40
39	14,300	86,444	2.9	78
38	8597	28,932	2.0	94
48	3017	10,889	2.1	70
66	9610	39,835	2.0	126
70	9723	32,258	2.0	117

Table 5. In vivo pharmacokinetics (PK) properties of selected PERK inhibitors in mice. Compounds administered at 10 mg/kg by oral gavage (PO).

Inhibitor **26** was co-crystallized with PERK into a trigonal space groupP3₂21 with comparable cell parameters as previously noted with compounds **11** and **24**. Replacement of the 3-fluorine on the terminal phenyl group in **11** and **24** and with a larger CF₃ group in **26** induces a flip in the phenyl ring since the enzyme position containing the fluorine cannot accommodate the bulkier CF₃ group (Figures 1 and 3). The fluorine atom of **24** forms four contacts with a distance of 3.8 Å or less with residues within the back pocket region of PERK, whereas the CF₃ group of **26** forms ten contacts with PERK. These extra contacts may stabilize the binding of **26** to PERK and explain the increased potency of **26** compared to **24**.

Compound **26** was found to have excellent selectivity in the DiscoverX kinase panel (Figure 4; Supplemental Table S2) comparable to that of compound **24**. The S(35), S(10), and S(1) selectivity scores at a concentration of 1 μ M were 0.01, 0.002, and 0.002. Importantly, **26** demonstrated potent selectivity for PERK over the other three highlyconserved ISR kinases (GCN2, HRI, and PKR; Supplemental Table S3). In biochemical assays, the IC₅₀ of **26** against PERK was 4.7 nM, compared to IC₅₀ values greater than 10 μ M for each of the other ISR kinases. The primary off-target activity of **26** was associated with FLT3 kinase and its mutant isoforms. Radiometric kinase assays were used to validate the kinome panel and determine the relative IC₅₀ value of **26** against wild-type FLT3 and a mutant isoform (D835Y). When evaluated individually using concentrations of **26** up to 10 μ M, the relative IC₅₀ against wild-type FLT3 was >1 μ M, and >10 μ M against the mutant variant FLT3 (D385Y), indicating weak to no activity against FLT3wt or the mutant form (Supplemental Table S3).

To understand the effect of **26** in target organs, the PK/PD relationship of **26** was investigated in mouse pancreas. PK analysis of plasma and pancreas samples from mice treated with **26** revealed dose-proportionate exposure at doses ranging from 0.3 to 30 mg/kg following a single administration by oral gavage (Supplemental Figure S2). Pancreas tissue was sampled to evaluate the effect of **26** on PERK autophosphorylation in pancreas, following oral administration of **26** at 0.3, 1, 3, 10, and 30 mg/kg. At 1 h following administration, phosphoPERK (T980), relative to total PERK protein (pPERK/PERK) decreased in a dose-dependent manner, reaching approximately 80% inhibition at 30 mg/kg (Figure 5A). When PERK inhibition was evaluated across time in mouse pancreas, a dose-dependent

48	3017	10,889	2.1	70
66	9610	39,835	2.0	126
70	9723	32,258	2.0	117

Pharmaceutics 2022, 14, 2233

15 of 20

Inhibitor 26 was co-crystallized with PERK into a trigonal space groupP3221 w comparable cell parameters as previously noted with compounds 11 and 24. Replacem of the it off was been the therminal matching group in \$1 and 24. Replacem ins 26 tind use 6 (Figure in Bherminal matching) group in \$1 and 24. Replacem cannow unceed in model and the phone of the second and the fluor cannow unceed in model and the constant of the second and the second involution of the second

Figure 3. Crystalsaturchura abapapausadahlaund teatre REBKdeinase dorvain. (A): View of 2 thue RERK actives the PERKaltacklouse is what are shown cylindter in brown dorate the foraging and the sold that side chains are shown cylindter in brown dorate hobble live for aging gate and the sold that side chains are shown cylindter in brown dorate hobble live for aging gate and the sold that side chains are shown cylindter in brown dorate hobble live for aging gate and the sold that side chains are shown cylindter in brown dorate hobble live for aging gate and the sold that side chains are shown cylindter in brown dorate hobble live for aging gate and the sold of the sold of the sold of the sold of the composition of the sold of the s

Compound **26** was found to have excellent selectivity in the DiscoverX kinase pa (Figure 4; Supplemental Table S2) comparable to that of compound **24**. The S(35), S(1) and S(1) selectivity scores at a concentration of 1 μ M were 0.01, 0.002, and 0.002. If portantly, **26** demonstrated potent selectivity for PERK over the other the

To privitor cach of the other 15K kindses. The printary on-target activity of 20 was associ ated with FLT3 kinase and its mutant isoforms. Radiometric kinase assays were used to validate the kinome panel and determine the relative IC₅₀ value of **26** against wild-type FLT3 and a mutant isoform (D835Y). When evaluated individually using concentrations of 26 up to 10 μ M, the relative IC₅₀ against wild-type FLT3 was >1 μ M, and >10 μ M against the mutant variant FLT3 (D385Y), indicating weak to no activity against FLT3 wt of the mutant form (Supplemental Table S3).

Pharmaceutics 2022. 14. 2233

Pharmaceutics 2022, 14, x

To understand the effect of 26 in target organs, the PK/PD relationship of 26 was investigated a mouse pancreas. PK analysis of plasma and pancreas samples from mice treated with 261 meyealed dose-proportionate exposure 19t doses ranging from 0.3 to 30 mg/kg following a single administration by oral gaving (Supplemental Figure S2). Pancreas tissue was ampled to evaluate the effect of 26 on FRK autophosphorylation in part crease, following wral administration of 26 at 0.3, 1, 2, 10, and 30 mg/kg. At 1 h pllowing administration, phosphonerk (1980), relative to total PERK protein (pPERK/PERK) de-Teased an a dese-dependent manner, reaching approximately 80% inhibition at 30 mg/kg 30 pendent inhibition was observed which was relatively stable actors a 124 period following administration of **26** (Figure 5B). This observation was consistent with the dose-

proportionate exposure and low clearance rate of 26 observed in both mouse plasma and Figure 5.5 Intrivity PK AVD analysis of 26.2 (AV multiliteing) of PERK Plateter date the date of the protocol of (PPERKYPENK))))) and the second s LMSMS/MSMomatching, pancreas samples at Gmax (1 h popertundministration) (B) (B) ibibibition of pPERK/PERK in particles samples at chira (in post atministration). (b) function of present mean ±SD of four mice. present the present mean ±SD of four mices atministration of **26** at 0.3, 3, or 30 mg/kg. Particless samples taken at 1, 4, 8, 12 h following oral administration of **26** bata represent mean ±SD of four mice. Samples taken at 1, 4, 8, 12 h following oral administration of **26** at 0.3, 3, or 30 mg/kg. Particless samples taken at 1, 4, 8, 12 h following oral administration of **26** bata represent mean ±SD of four mice. (C) Plasma PK analysis of **26** in mouse, rat and dog. **26** administered orally at 10 mg/kg, and sampled mice. (C) Plasma PK analysis of **26** in mouse, rat and dog. **26** administered orally at 10 mg/kg, and sampled across a 24-h period; **26** quantified by LC-MS/MS.

As the focus of this program was to develop a novel, highly potent, selective and orally bioavailable PERK inhibitor to probe the role of PERK biology in animal models, compounds 24, 26 and 70 were tested for in vivo efficacy in a clear cell renal cell carcinoma (ccRCC) xenograft model, 786-O (Figure 6). The 786-O model is driven by the Von Hippel-Lindau (VHL) mutation, which leads to PERK pathway activation and is therefore a suitable model to assess the biological activity of these PERK inhibitors [17]. The compounds were dosed at 30 mg/kg, twice per day (BID) for 29 days and were well tolerated as deterpPERK/PERK in pancreas following oral administration of **26** at 0.3, 3, or 30 mg/kg. Pancreas samples taken at 1, 4, 8, 12 h following oral administration of **26**. Data represent mean ± SD of four mice (**C**) Plasma PK analysis of **26** in mouse, rat and dog. **26** administered orally at 10 mg/kg, and sampled across a 24-h period; **26** quantified by LC-MS/MS.

Pharmaceutics 2022, 14, 2233

As the focus of this program was to develop a novel, highly potent, selective and orally bioavailable PERK inhibitor to probe the role of PERK biology in animal models compounds **24**, **26** this **70** were tested of in ViVo efficacy in a place of selective and orally bioavailable PERK inhibitor to probe the role of PERK biology in animal models compounds **24**, **26** and **70** were tested for in ViVo efficacy in a clear cell renal cell carcinoma (ccRCC) xenograft model, 786-00 (Figure 6). The 786-00 model is driven by the Von Hippel compounds **24**, **26** and **70** were tested for in ViVo efficacy in a clear cell renal cell carcinoma (ccRCC) xenograft model, 786-00 (Figure 6). The 786-00 model is driven by the Von Hippel compounds **24**, **26** and **70** were tested for in ViVo efficacy in a clear cell renal cell carcinoma (ccRCC) xenograft model, 786-00 (Figure 6). The 786-00 model is driven by the Von Hippeltindau (VHL) mutation 786-00 (Figure 6). The 786-00 model is driven by the Von Hippeltham (VHL) mutation 786-00 (Figure 6). The 786-00 model is driven by the Von Hippeltham (VHL) mutation 786-00 (Figure 6). The 786-00 model is driven by the Von Hippeltham (VHL) material states the biological of the 786-00 model is driven by the Von Hippeltham (VHL) material states and the 786-00 model is driven by the Von Hippeltham (VHL) material states and the 786-00 model is driven by the Von Hippeltham (VHL) material states and the 786-00 model is driven by the Von Hippeltham (VHL) material states and the 786-000 model is driven by the Von Hippeltham (VHL) material states and the 786-000 model is driven by the Von Hippeltham (VHL) material states and the 786-000 model is driven by the Von Hippeltham (VHL) material states and the 786-000 model is driven by the Von Hippeltested by body gave and as (BED) on tage and the 786-000 model is driven by the Von Hippeltyle by by the Von Hippeltyle by by the Von Hippeltested by by dynamic states anormal states and the figure states and the figure states and the f

Figure 6. PERK inhibitors **24**, **26** and **70** inhibit tumor growth of 786-O RCC xenografts. Animals were treated at 30 mg/kg BID dosing for 29 days. Statistical analysis of group means by one-way ANOVA (** p < 0.01, *** p < 0.001).

In summary, we have developed a novel class of potent pyrrolopyrimidine PERK inhibitors with excellent ADME and PK/PD properties. Robust kinase selectivity was achieved with substitution on the pyrrolopyrimidine hinge binder region driving kinase selectivity, with a methyl substitution at the 2-position of the ring resulting in exquisite selectivity for PERK over other kinases. Further optimization of the 2-methyl substituted analogs led to identification of lead molecule **26** that retained excellent potency and selectivity and had good in vitro metabolic stability across all species tested. When **26** was evaluated in vivo, high AUC_{last} values and a flat, sustained plasma exposure profile were observed in mouse plasma and pancreas tissue. A single administration of **26** resulted in stable PERK inhibition across a 12 h period in mouse pancreas. These characteristics led to the selection of **26** for further development, and evaluation in animal models is ongoing.

Supplementary Materials: The following supporting information can be downloaded at: https:// www.mdpi.com/article/10.3390/pharmaceutics14102233/s1, Supplemental Table S1: Crystallography data collection and refinement statistics; Supplemental Table S2:scanMAXSM Kinome Assay Results; Supplemental Table S3: Potency of Cmpd 26 against four ISR kinases and two FLT3 isoforms; Supplemental Figure S1: Compound 26 is selective against cell lines driven by FLT3-ITD; Supplemental Figure S2: In vivo PK in plasma and pancreas; Supplemental Figure S3: Compound 26 slows growth of 786-O RCC tumor xenografts; Supplemental Scheme S1: Synthesis of (R)-N-(4-(4amino-7-methyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-3-methylphenyl)-2-(3-fluorophenyl)-2-hydroxy acetamide (11) and (5)-N-(4-(4-amino-7-methyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-3-methylphenyl) -2-(3-fluorophenyl) -2-hydroxyacetamide (12); Supplemental Scheme S2: Synthesis of (S)-N-(4-(4amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2,3-difluoro phenyl)-2-(3-fluorophenyl)-2hydroxyacetamide (96) and (R)-N-(4-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-2,3difluorophenyl)-2-(3-fluorophenyl)-2-hydroxyacetamide (70); Supplemental Scheme S3: Synthesis of (S)-N-(4-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)-3-fluorophenyl)-2-hydroxy-2-(3-(trifluoromethyl)phenyl)acetamide (106) and (R)-N-(4-(4-amino-2,7-dimethyl-7H-pyrrolo[2,3d]pyrimidin-5-yl)-3-fluorophenyl)-2-hydroxy-2-(3-(trifluoromethyl) phenyl)acetamide (47). References [7,17,20-25,27] are cited in the supplementary materials.

Author Contributions: Conceptualization, M.J.M., A.C.R., M.E.S. and M.D.S.; methodology, M.J.M., M.E.S., J.G., M.B., V.C., D.S., A.-H.L. and M.D.S.; formal analysis, M.D.S., M.E.S., D.S. and V.C.; investigation, M.E.S., V.C., G.Z., M.B. and J.G.; resources, A.C.R. and M.J.M.; data curation, G.Z. and M.D.S.; writing—original draft preparation, M.J.M., M.E.S., M.D.S. and V.C.; writing—review and editing, M.E.S., M.J.M. and M.D.S.; visualization, H.D. and G.Z.; supervision, A.C.R., M.J.M., M.E.S., J.G., M.B. and M.D.S.; funding acquisition, A.C.R. and M.J.M. All authors have read and agreed to the published version of the manuscript.

Funding: All laboratory work was funded by HiberCell Inc.

Institutional Review Board Statement: All the procedures related to animal handling, care, and the treatment in this study were performed according to guidelines approved by the Institutional Animal Care and Use Committee (IACUC) of Pharmaron following the guidance of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC). All animal studies were approved and carried out in accordance with Pharmaron's Institutional Animal Care and Use Committee, protocol ON-TOL-09012021 approved on 26 March 2021.

Data Availability Statement: Coordinates and structural factors have been deposited in the PDB under codes 8EQ9 (Compound 11), 8EQD (Compound 24), and 8EQE (Compound 26).

Acknowledgments: We acknowledge the support of Advanced Photon Source beam lines IMCA-CAT and GMCA-CAT. The use of the IMCA-CAT beamline 17-ID at APS was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with the Hauptman-Woodward Medical Research Institute. GM/CA@APS has been funded in whole or in part with Federal funds from the NCI, National Institutes of Health, Grant ACB-12002 and NIGMS, National Institutes of Health Grant AGM-12006. This research used resources of the Advanced Photon Source, a United States Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. We also thank Arie Zask for reviewing the manuscript and sharing thoughtful editorial feedback. HiberCell would like to thank and acknowledge the chemists at Curia, Hyderabad: Srikanth Malibhatla, Madhavarao Bandaru, Prabhakara Reddy Goluguri, Satyanarayana Yatam, Ravi Adarasandi, Madhusudhan Velmala, Durga Rama Prasad Singireddi, Mahendar Velpuri, Bhaskar Reddy Nareddy, Visweswara Sastry, Chiranjeevi Mandati, Kumaraswamy Battula, Rajashekar Reddy Chittem, Sujatha Kanuganti, Shapi Siddiqui, and Subir Sadhukhan. The authors would also like to thank technical assistance by Elena Chad, Jennifer Wolfley, Richard Miller, Kirsten Feldman, Brent Weins, and Mary Koszelak-Rosenblum.

Conflicts of Interest: At the time of execution, M.E.S., V.C., D.S., A.-H.L., A.C.R. and M.J.M. were employed by HiberCell Inc. As such, HiberCell was involved in all aspects of this work, including conceptualization and methodology, investigation, data analysis, resources, and writing of this manuscript. Curia Global is a contract research organization engaged by HiberCell Inc to support chemical synthesis and characterization of novel molecules. At the time of experimentation, M.D.S., M.B., J.G. and G.Z. were employed by Curia Global, which was involved in conceptualization, methodology, resources, data analysis and manuscript composition. Pharmaron Co. Ltd. is a contract research organization engaged by HiberCell to support chemical characterization of novel compounds. At the time of experimentation, H.D. was employed by Pharmaron, which was involved in data visualization and manuscript composition.

References

- 1. Hetz, C.; Zhang, K.; Kaufman, R.J. Mechanisms, regulation and functions of the unfolded protein response. *Nat. Rev. Mol. Cell Biol.* 2020, *21*, 421–438. [CrossRef] [PubMed]
- 2. Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. *Science* 2011, 334, 1081–1086. [CrossRef]
- 3. Hetz, C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. *Nat. Rev. Mol. Cell Biol.* 2012, 13, 89–102. [CrossRef] [PubMed]
- 4. Mann, M.J.; Hendershot, L.M. UPR activation alters chemosensitivity of tumor cells. *Cancer Biol. Ther.* **2006**, *5*, 736–740. [CrossRef] [PubMed]
- 5. Ma, Y.; Hendershot, L.M. The role of the unfolded protein response in tumour development: Friend or foe? *Nat. Rev. Cancer* 2004, 4, 966–977. [CrossRef] [PubMed]
- Avril, T.; Vauléon, E.; Chevet, E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. *Oncogenesis* 2017, 6, e373. [CrossRef] [PubMed]
- Calvo, V.; Surguladze, D.; Li, A.-H.; Surman, M.D.; Malibhatla, S.; Bandaru, M.; Jonnalagadda, S.K.; Adarasandi, R.; Velmala, M.; Singireddi, D.R.P.; et al. Discovery of 2-amino-3-amido-5-aryl-pyridines as highly potent, orally bioavailable, and efficacious PERK kinase inhibitors. *Bioorg. Med. Chem. Lett.* 2021, 43, 128058. [CrossRef] [PubMed]
- Atkins, C.; Liu, Q.; Minthorn, E.; Zhang, S.-Y.; Figueroa, D.J.; Moss, K.; Stanley, T.B.; Sanders, B.; Goetz, A.; Gaul, N.; et al. Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity. *Cancer Res.* 2013, 73, 1993–2002. [CrossRef] [PubMed]
- Oakes, S.A.; Papa, F.R. The Role of Endoplasmic Reticulum Stress in Human Pathology. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 173–194. [CrossRef]
- Sharma, R.B.; Landa-Galván, H.V.; Alonso, L.C. Living Dangerously: Protective and Harmful ER Stress Responses in Pancreatic β-Cells. *Diabetes* 2021, 70, 2431–2443. [CrossRef] [PubMed]
- 11. Brozzi, F.; Eizirik, D.L. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. *Upsala J. Med. Sci.* 2016, 121, 133–139. [CrossRef] [PubMed]
- Marré, M.L.; James, E.A.; Piganelli, J.D. β cell ER stress and the implications for immunogenicity in type 1 diabetes. *Front. Cell Dev. Biol.* 2015, *3*, 67. [CrossRef] [PubMed]
- Marhfour, I.; Lopez, X.M.; Lefkaditis, D.; Salmon, I.; Allagnat, F.; Richardson, S.J.; Morgan, N.G.; Eizirik, D.L. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. *Diabetologia* 2012, 55, 2417–2420. [CrossRef] [PubMed]
- Tersey, S.A.; Nishiki, Y.; Templin, A.T.; Cabrera, S.M.; Stull, N.D.; Colvin, S.C.; Evans-Molina, C.; Rickus, J.L.; Maier, B.; Mirmira, R.G. Islet β-Cell Endoplasmic Reticulum Stress Precedes the Onset of Type 1 Diabetes in the Nonobese Diabetic Mouse Model. *Diabetes* 2012, *61*, 818–827. [CrossRef] [PubMed]
- Zhang, P.; McGrath, B.; Li, S.; Frank, A.; Zambito, F.; Reinert, J.; Gannon, M.; Ma, K.; McNaughton, K.; Cavener, D.R. The PERK Eukaryotic Initiation Factor 2α Kinase Is Required for the Development of the Skeletal System, Postnatal Growth, and the Function and Viability of the Pancreas. *Mol. Cell. Biol.* 2002, 22, 3864–3874. [CrossRef] [PubMed]
- Harding, H.P.; Zeng, H.; Zhang, Y.; Jungries, R.; Chung, P.; Plesken, H.; Sabatini, D.D.; Ron, D. Diabetes Mellitus and Exocrine Pancreatic Dysfunction in Perk-/- Mice Reveals a Role for Translational Control in Secretory Cell Survival. *Mol. Cell* 2001, 7, 1153–1163. [CrossRef]
- Smith, A.L.; Andrews, K.L.; Beckmann, H.; Bellon, S.F.; Beltran, P.J.; Booker, S.; Chen, H.; Chung, Y.-A.; D'Angelo, N.D.; Dao, J.; et al. Discovery of 1*H*-Pyrazol-3(2*H*)-ones as Potent and Selective Inhibitors of Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK). *J. Med. Chem.* 2015, *58*, 1426–1441. [CrossRef] [PubMed]
- Ayala-Aguilera, C.C.; Valero, T.; Lorente-Macías, Á; Baillache, D.J.; Croke, S.; Unciti-Broceta, A. Small Molecule Kinase Inhibitor Drugs (1995–2021): Medical Indication, Pharmacology, and Synthesis. J. Med. Chem. 2021, 65, 1047–1131. [CrossRef]
- 19. Xing, L.; Klug-Mcleod, J.; Rai, B.; Lunney, E.A. Kinase hinge binding scaffolds and their hydrogen bond patterns. *Bioorg. Med. Chem.* **2015**, *23*, 6520–6527. [CrossRef] [PubMed]

- Winter, G.; Waterman, D.G.; Parkhurst, J.M.; Brewster, A.S.; Gildea, R.J.; Gerstel, M.; Fuentes-Montero, L.; Vollmar, M.; Michels-Clark, T.; Young, I.D.; et al. *DIALS*: Implementation and evaluation of a new integration package. *Acta Crystallogr. Sect. D Struct. Biol.* 2018, 74 Pt 2, 85–97. [CrossRef]
- 21. Evans, P.R.; Murshudov, G.N. How good are my data and what is the resolution? *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2013, 69 *Pt* 7, 1204–1214. [CrossRef] [PubMed]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40 Pt 4, 658–674. [CrossRef] [PubMed]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66 Pt 4, 486–501. [CrossRef]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2011, 67 Pt 4, 355–367. [CrossRef]
- McNicholas, S.; Potterton, E.; Wilson, K.S.; Noble, M.E.M. Presenting your structures: TheCCP4mgmolecular-graphics software. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67 Pt 4, 386–394. [CrossRef] [PubMed]
- Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; et al. A small molecule–kinase interaction map for clinical kinase inhibitors. *Nat. Biotechnol.* 2005, 23, 329–336. [CrossRef]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and better reference data for improved all-atom structure validation. *Protein Sci.* 2018, 27, 293–315. [CrossRef] [PubMed]